全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于有监督主题模型的排序学习算法

DOI: 10.3969/j.issn.0372-2112.2015.02.019, PP. 333-337

Keywords: 排序学习,机器学习,关系主题模型,主题特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

文档表示是排序学习的关键,目前的排序学习算法多采用词袋法表示文档与查询,该方法假设词袋中的词相互独立,忽略了词之间的关系.为了表示文档中词之间的依赖关系,本研究利用文档与查询的主题特征构建排序学习模型,我们将排序函数定义为文档与查询之间的主题关系,提出了基于有监督主题模型的排序学习算法自动学习排序函数.为了评价模型的排序精度,我们在三个标准数据集(OHSUMED,MQ2007,MQ2008)上进行了实验.实验表明基于主题的排序学习算法能够发现文档与查询之间内在的语义关联,并改善排序模型的排序精度.

References

[1]  Deerwester S,Dumais SS T,Furnas G W,Landauer T K,Harshman R.Indexing by latent semantic analysis[J].JAM SOC INFORM SCI,1990,41(6):391-407.
[2]  Blei D,Ng A,Jordan M.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(1):993-1022.
[3]  王李冬,等.基于概率主题模型的文档聚类[J].电子学报,2012,40(11):2346-2350. Wang Lidong,et al.Document clustering based on probabilistic topic model[J].Acta Electronica Sinica,2012,40(11):2346-2350.(in Chinese)
[4]  吴永辉,等.基于主题的自适应、在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,38(11):2620-2634. Wu yonghui,et al.Adaptive on-line web topic detection method for web news recommendation system[J].Acta Electronica Sinica,2010,38(11):2620-2634.(in Chinese)
[5]  Chang J,Blei D.Hierarchical relational models for document networks[J].The Annals of Applied Statistics,2010,4(1):124-150.
[6]  Blei D,McAuliffe J.Supervised topic models[A].Neural Inforamtion Processing System Conference[C].Vancouver,Canada:MIT Press,2007.1-8.
[7]  Zhu J,Ahmed A,Xing E P.MedLDA:maximum margin supervised topic models for regression and classification[A].International Conference on Machine Learning[C].Montreal,Canada:ACM,2009.158-1264.
[8]  Erosheva E,Fienberg S,Lafferty J.Mixed-membership models of scientific publications[J].National Academy of Sciences,2004,97(22):11885-11892.
[9]  Wang Q,et al.Regularized latent semantic indexing[A].SIGIR''2011[C].Beijing,China:ACM,2011.685-694.
[10]  Nallapati R,Cohen W.Link-PLSA-LDA:a new unsupervised model for topics and influence of blogs[A].Proceedings of Association for the Advancement of Artificial Intelligence[C].Chicago,USA:AAAI Press,2008.84-92.
[11]  Xu J,et al.LETOR:Benchmark letor dataset for research on learning to rank for information retrieval[A].Proceding of SIGIR Workshop on Learning to Rank for Information Retrieval[C].Amsterdam,Holland:ACM,2007.201-206.
[12]  Qin T,Liu T,Xu J,Li H.LETOR:Benchmark letor dataset for research on learning to rank for information retrieval[J].Information Retrieval,2010,13(4):346-374.
[13]  Joachims T.Training Linear SVMs in Linear Time[A].the ACM Conference on Knowledge Discovery and Data Mining[C].Philadelphia,USA:ACM,2006.217-226.
[14]  Jarvelin K,Kekalainen,J.IR evaluation methods for retrieving highly relevant documents[A].SIGIR''000[C].Athens,Greece:ACM,2000.41-48.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133