Humbird D, Davis R, Tao L, et al, Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol:dilute-acid pretreatment and enzymatic hydrolysis of corn stover[R]. USA:National Renewable Energy Laboratory(NREL), 2011.
[2]
Bornscheuer UT. Immobilizing enzymes:how to create more suitable biocatalysts[J]. Angewandte Chemie International Edition, 2003, 42(29):3336-3337.
[3]
王景林. 纤维素酶固定化的研究进展[J]. 生命科学, 1997, 9(3):116-118.
[4]
Mosbach K. Immobilized enzymes[J]. Trends in Biochemical Sciences, 1980, 5(1):1-3.
[5]
Wang S, Su P, Ding F, et al. Immobilization of cellulase on polyamidoamine dendrimer-grafted silica[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 89:35-40.
[6]
Safari Sinegani AA, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals[J]. J Colloid Interface Sci, 2005, 290(1):39-44.
[7]
Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J]. Journal of Membrane Science, 2005, 250(1-2):167-173.
[8]
Cipolatti EP, Silva MJA, Klein M, et al. Current status and trends in enzymatic nanoimmobilization[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 99:56-67.
[9]
Mubarak NM, Wong JR, Tan KW, et al. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes[J]. J Mol Catal B:Enzym, 2014, 107:124-131.
[10]
Suh WH, Suslick KS, Stucky GD, et al. Nanotechnology, nanotoxicology, and neuroscience[J]. Progress in Neurobiology, 2009, 87(3):133-170.
[11]
Lupoi JS, Smith EA. Evaluation of nanoparticle-immobilized cell-ulase for improved ethanol yield in simultaneous saccharification and fermentation reactions[J]. Biotechnology and Bioenginee-ring, 2011, 108(12):2835-2843.
[12]
Tang ZX, Qian JQ, Shi LE. Characterizations of immobilized neutral lipase on chitosan nano-particles[J]. Materials Letters, 2007, 61(1):37-40.
Alftren J, Hobley TJ. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling[J]. Biomass and Bioenergy, 2014, 65:72-78.
[16]
Talbert JN, Goddard JM. Enzymes on material surfaces[J]. Colloids and Surfaces B:Biointerfaces, 2012, 93:8-19.
[17]
Šulek F, Drofenik M, Habulin M, et al. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase[J]. J Magn Magn Mater, 2010, 322(2):179-185.
Liao H, Chen D, Yuan L, et al. Immobilized cellulase by polyvinyl alcohol/Fe 2 O 3 magnetic nanoparticle to degrade microcrystalline cellulose[J]. Carbohydrate Polymers, 2010, 82(3):600-604.
[21]
Mao X, Guo G, Huang J, et al. A novel method to prepare chitosan powder and its application in cellulase immobilization[J]. J Chemi Technol Biotechnology, 2006, 81(2):189-195.
Zang L, Qiu J, Wu X, et al. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(9):3448-3454.
[24]
Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads[J]. J Mol Catal B:Enzym, 2007, 45(1-2):10-14.
[25]
Jiang Y, Guo C, Xia H, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification[J]. J Mol Catal B:Enzym, 2009, 58(1-4):103-109.
[26]
Jordan J, Kumar CSSR, Theegala C. Preparation and characterization of cellulase-bound magnetite nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 68(2):139-146.
[27]
Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme and Microbial Technology, 2007, 40(6):1451-1463.
[28]
Nelson JM, Griffin EG. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5):1109-1115.
[29]
Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation[J]. Chemical Society Reviews, 2009, 38(2):453-468.
Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase[J]. Langmuir, 2009, 25(3):1582-1587.
[33]
Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells[J]. Biotechnol Adv, 2006, 24(3):296-308.
[34]
Gokhale AA, Lu J, Lee I. Immobilization of cellulase on magnetoresponsive graphene nano-supports[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 90:76-86.
[35]
Ansari SA, Husain Q. Potential applications of enzymes immobiliz-ed on/in nano materials:A review[J]. Biotechnology Advances, 2012, 30(3):512-523.
Mehta RV, Upadhyay RV, Charles SW, et al. Direct binding of protein to magnetic particles[J]. Biotechnology Techniques, 1997, 11(7):493-496.
[38]
霍书豪, 许敬亮, 张猛, 等. Fe 3 O 4 纳米颗粒固定化纤维素酶的酶学特性研究[J]. 可再生能源, 2009(6):33-35, 40.
[39]
Khoshnevisan K, Bordbar AK, Zare D, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determi-nation of its activity and stability[J]. Chemical Engineering Jou-rnal, 2011, 171(2):669-673.
[40]
Xu J, Huo S, Yuan Z, et al. Characterization of direct cellulase immobilization with superparamagnetic nanoparticles[J]. Biocatalysis and Biotransformation, 2011, 29(2-3):71-76.
[41]
Zoungrana T, Norde W. Thermal stability and enzymatic activity of α-chymotrypsin adsorbed on polystyrene surfaces[J]. Colloids and Surfaces B:Biointerfaces, 1997, 9(3):157-167.
[42]
Lopez-Gallego F, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. Journal of Biotechnology, 2005, 119(1):70-75.