全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁性纳米材料载体固定纤维素酶技术研究进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.08.009, PP. 59-65

Keywords: 生物乙醇,纤维素酶,酶固定化,磁性纳米载体

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物质原料转化为还原性糖,从而为生物质燃料乙醇的生产提供基础原料。针对现在游离酶生产工艺中的不足,研究者提出了纤维素酶固定化技术,其中以磁性纳米材料作为纤维素酶的固定化载体,不仅可提高纤维素酶的催化性能,增强酶的稳定性,而且以外加磁场代替传统的机械搅拌方式可充分发挥载体材料的磁响应性,从而使制备的固定化酶从反应体系中易于分离,高效且具有重复性。研究者们提出了很多优秀的纤维素酶固定化方案,综述了近年来磁性纳米材料固定纤维素酶的不同方法,并对其做了较为详细的阐述,在此基础上进一步对其优缺点和发展前景进行了讨论。

References

[1]  Humbird D, Davis R, Tao L, et al, Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol:dilute-acid pretreatment and enzymatic hydrolysis of corn stover[R]. USA:National Renewable Energy Laboratory(NREL), 2011.
[2]  Bornscheuer UT. Immobilizing enzymes:how to create more suitable biocatalysts[J]. Angewandte Chemie International Edition, 2003, 42(29):3336-3337.
[3]  王景林. 纤维素酶固定化的研究进展[J]. 生命科学, 1997, 9(3):116-118.
[4]  Mosbach K. Immobilized enzymes[J]. Trends in Biochemical Sciences, 1980, 5(1):1-3.
[5]  Wang S, Su P, Ding F, et al. Immobilization of cellulase on polyamidoamine dendrimer-grafted silica[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 89:35-40.
[6]  Safari Sinegani AA, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals[J]. J Colloid Interface Sci, 2005, 290(1):39-44.
[7]  Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J]. Journal of Membrane Science, 2005, 250(1-2):167-173.
[8]  Cipolatti EP, Silva MJA, Klein M, et al. Current status and trends in enzymatic nanoimmobilization[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 99:56-67.
[9]  Mubarak NM, Wong JR, Tan KW, et al. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes[J]. J Mol Catal B:Enzym, 2014, 107:124-131.
[10]  Suh WH, Suslick KS, Stucky GD, et al. Nanotechnology, nanotoxicology, and neuroscience[J]. Progress in Neurobiology, 2009, 87(3):133-170.
[11]  Lupoi JS, Smith EA. Evaluation of nanoparticle-immobilized cell-ulase for improved ethanol yield in simultaneous saccharification and fermentation reactions[J]. Biotechnology and Bioenginee-ring, 2011, 108(12):2835-2843.
[12]  Tang ZX, Qian JQ, Shi LE. Characterizations of immobilized neutral lipase on chitosan nano-particles[J]. Materials Letters, 2007, 61(1):37-40.
[13]  王玫, 宋芳, 汪世龙, 等. 磁性纳米颗粒Fe 3 O 4 固定化纤维素酶的光谱学研究[J]. 光谱学与光谱分析, 2006(5):895-, 88.
[14]  霍书豪, 许敬亮, 庄新姝, 等. 超顺磁性纳米颗粒固定化纤维素酶初步研究[J]. 现代化工, 2009(S2):188-190.
[15]  Alftren J, Hobley TJ. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling[J]. Biomass and Bioenergy, 2014, 65:72-78.
[16]  Talbert JN, Goddard JM. Enzymes on material surfaces[J]. Colloids and Surfaces B:Biointerfaces, 2012, 93:8-19.
[17]  Šulek F, Drofenik M, Habulin M, et al. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase[J]. J Magn Magn Mater, 2010, 322(2):179-185.
[18]  廖红东, 袁丽, 童春义, 等. 基于聚乙烯醇/Fe 2 O 3 纳米颗粒的纤维素酶固定化[J]. 高等学校化学学报, 2008(8):1564-1568.
[19]  张猛, 许敬亮, 张宇, 等. 氨基硅烷化磁性纳米微球固定化纤维素酶研究[J]. 太阳能学报, 2013(2):337-342.
[20]  Liao H, Chen D, Yuan L, et al. Immobilized cellulase by polyvinyl alcohol/Fe 2 O 3 magnetic nanoparticle to degrade microcrystalline cellulose[J]. Carbohydrate Polymers, 2010, 82(3):600-604.
[21]  Mao X, Guo G, Huang J, et al. A novel method to prepare chitosan powder and its application in cellulase immobilization[J]. J Chemi Technol Biotechnology, 2006, 81(2):189-195.
[22]  石浩明, 张树彪, 陈会英, 等. 壳聚糖/Fe 3 O 4 复合纳米颗粒的制备[J]. 大连民族学院学报, 2012(3):213-216.
[23]  Zang L, Qiu J, Wu X, et al. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(9):3448-3454.
[24]  Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads[J]. J Mol Catal B:Enzym, 2007, 45(1-2):10-14.
[25]  Jiang Y, Guo C, Xia H, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification[J]. J Mol Catal B:Enzym, 2009, 58(1-4):103-109.
[26]  Jordan J, Kumar CSSR, Theegala C. Preparation and characterization of cellulase-bound magnetite nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 68(2):139-146.
[27]  Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme and Microbial Technology, 2007, 40(6):1451-1463.
[28]  Nelson JM, Griffin EG. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5):1109-1115.
[29]  Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation[J]. Chemical Society Reviews, 2009, 38(2):453-468.
[30]  徐莉, 侯红萍. 酶的固定化方法的研究进展[J]. 酿酒科技, 2010(1):86-89.
[31]  Sheldon RA. Enzyme immobilization:the quest for optimum performance[J]. Advanced Synthesis & Catalysis, 2007, 349(8- 9):1289-1307.
[32]  Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase[J]. Langmuir, 2009, 25(3):1582-1587.
[33]  Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells[J]. Biotechnol Adv, 2006, 24(3):296-308.
[34]  Gokhale AA, Lu J, Lee I. Immobilization of cellulase on magnetoresponsive graphene nano-supports[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 90:76-86.
[35]  Ansari SA, Husain Q. Potential applications of enzymes immobiliz-ed on/in nano materials:A review[J]. Biotechnology Advances, 2012, 30(3):512-523.
[36]  辛宝娟, 邢国文. 氧化铁磁性纳米粒子固定化酶[J]. 化学进展, 2010, 22(4):593-602.
[37]  Mehta RV, Upadhyay RV, Charles SW, et al. Direct binding of protein to magnetic particles[J]. Biotechnology Techniques, 1997, 11(7):493-496.
[38]  霍书豪, 许敬亮, 张猛, 等. Fe 3 O 4 纳米颗粒固定化纤维素酶的酶学特性研究[J]. 可再生能源, 2009(6):33-35, 40.
[39]  Khoshnevisan K, Bordbar AK, Zare D, et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determi-nation of its activity and stability[J]. Chemical Engineering Jou-rnal, 2011, 171(2):669-673.
[40]  Xu J, Huo S, Yuan Z, et al. Characterization of direct cellulase immobilization with superparamagnetic nanoparticles[J]. Biocatalysis and Biotransformation, 2011, 29(2-3):71-76.
[41]  Zoungrana T, Norde W. Thermal stability and enzymatic activity of α-chymotrypsin adsorbed on polystyrene surfaces[J]. Colloids and Surfaces B:Biointerfaces, 1997, 9(3):157-167.
[42]  Lopez-Gallego F, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. Journal of Biotechnology, 2005, 119(1):70-75.
[43]  李咏兰, 吕桂芬, 弓剑, 等. 纳米磁性微粒固定化纤维素酶及水解秸秆的研究[J]. 江西师范大学学报:自然科学版, 2011(6):574-578.
[44]  王秀玲, 顾银君, 庄虹, 等. 新型氨基化磁性树状分子纳米颗粒的制备与表征[J]. 化工新型材料, 2012(11):61-63.
[45]  Liu X, Hu Q, Fang Z, et al. Magnetic chitosan nanocomposites:a useful recyclable tool for heavy metal ion removal[J]. Langmuir, 2008, 25(1):3-8.
[46]  李冰, 邵海员, 黎锡流, 等. 磁性固定化纤维素酶的交联法制备及其磁致酶学性质[J]. 河南工业大学学报:自然科学版, 2006(6):10-14.
[47]  马云辉, 陈国, 赵珺. 壳聚糖包覆磁性纳米粒子的制备和表征以及蛋白质吸附特性[J]. 高分子学报, 2013(11):1369-1375.
[48]  Podrepšek GH, Primožič M, Knez Ž, et al. Immobilization of cellulase for industrial production[J]. Chemical Engineering, 2012, 27:235-240.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133