Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains[J]. Appl Microbiol Biotechnol, 2002, 3:233-242.
[4]
Wei S, Song Q, Wei D. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone[J]. Prep Biochem Biotechnol, 2007, 37(1):67-76.
[5]
Hekmat D, Bauer R, Fricke J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans[J]. Bioprocess Biosyst Eng, 2003, 26:109-116.
Li MH, Wu J, Liu X, et al. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans[J]. Bioresource Technology, 2010, 101:8294-8299.
[8]
Gupta A, Singh VK, Qazi GN, et al. Gluconobacter oxydans:Its biotechnological applications[J]. J Mol Microbiol Biotechnol, 2001, 3:445-456.
[9]
Shinjoh M, Tomiyama N, Miyazaki T, et al. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity[J]. Biosci Biochem, 2002, 66:2314-2322.
[10]
Claret C, Bories A, Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans[J]. Current Microbiology, 1992, 25:149-155.
[11]
Habe H, Shimada Y, Yakushi T, et al. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol[J]. Appl Environ Microbiol, 2009, 75(24):7760-7766.
[12]
Habe H, Fukuoka T, Morita T, et al. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans[J]. Biosci Biotechnol Biochem, 2010, 74(7):1391-1395.
[13]
Mishra R, Jain SR, Kumar A. Microbial production of dihydroxyace-tone[J]. Biotechnol Adv, 2008, 26(4):293-303.
[14]
Raska J, Skopal F, Komers K, et al. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions[J]. Collect Czechoslov Chem Commun, 2007, 72(9):1269-1283.
[15]
Claret C, Salmon JM, Romieu C, et al. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol[J]. Appl Microbiol Biotechnol, 1994, 41:359-365.
[16]
Wethmar M, Deckwer W. Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans[J]. Biotechnology Techniques, 1999, 13(4):283-287.
[17]
Wei S, Song Q, Wei D. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone[J]. Prep Biochem Biotechnol, 2007, 37(2):113-121.
[18]
Svitel J, Sturdik E. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans[J]. J Ferment Bioeng, 1994, 78:351-355.
[19]
Hekmat D, Bauer R, Neff V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans[J]. Process Biochemistry, 2007, 42:71-76.
Bories A, Claret C, Soueaille P. Kinetic study and optimization of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans[J]. Process Biochem, 1991, 26:243-248.
[23]
Gatgens C, Degner U, Bringer-Meyer S, et al. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343[J]. Appl Microbiol Biotechnol, 2007, 76(3):553-559.
Bauer R, Katsikis N, Varga S, et al. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process[J]. Bioprocess and Biosystems Engineering, 2005, 28(1):37-43.