全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulating Displacement and Velocity Signals by Piezoelectric Sensor in Vibration Control Applications

DOI: 10.1155/2012/390873

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intelligent structures with built-in piezoelectric sensor and actuator that can actively change their physical geometry and/or properties have been known preferable in vibration control. However, it is often arguable to determine if measurement of piezoelectric sensor is strain rate, displacement, or velocity signal. This paper presents a neural sensor design to simulate the sensor dynamics. An artificial neural network with error backpropagation algorithm is developed such that the embedded and attached piezoelectric sensor can faithfully measure the displacement and velocity without any signal conditioning circuitry. Experimental verification shows that the neural sensor is effective to vibration suppression of a smart structure by embedded sensor/actuator and a building structure by surface-attached piezoelectric sensor and active mass damper. 1. Introduction Composite structures with surface-mounted or -embedded piezoelectric materials as sensors and/or actuators have been investigated for they possess mechanical simplicity, efficient electromechanical energy conversion, and ability to integrate within structures. Much attention to date has been on analysis and experiment of active vibration control by using piezoelectric sensors and actuators. Review on using piezoelectric materials to MEMS sensor [1], morphing aircraft [2], and structural repair [3] have been reported. Yang and Chiu [4] were among the first to embedded piezoelectric sensors inside composite-laminated structures. The sensors were found to have stiffening effects [5–8]. Among the applications; however, piezoelectric sensor measurement was considered as displacement signal [9–11], velocity signal [12, 13], or strain rate signal [14, 15]. There seems to be inconsistency on the signal nature, and signal conditioning circuit is often necessary. It is known that effective vibration control requires the system state of displacement and velocity; however, such signals are difficult to acquire as they are often obtained either by accelerometer with hardware integration for velocity or by piezoelectric sensor assuming velocity measurement. Accurate sensor dynamics modeling is required for designing a controller immune to modeling discrepancy. Artificial neural networks with the ability of self-learning, generalization, and robustness have been shown suitable for simulating sensor dynamics by system identification. The concept of neural sensor design is to use the piezoelectric sensor measurement to estimate online both the displacement and velocity at the sensor location. Recent development

References

[1]  S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Measurement Science & Technology, vol. 20, no. 9, Article ID 092001, 2009.
[2]  S. Barbarino, O. Bilgen, R. M. Ajaj, M. Friswell, and D. J. Inman, “A review of morphing aircraft,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011.
[3]  Q. Wang and N. Wu, “A review on structural enhancement and repair using piezoelectric materials and shape memory alloys,” Smart Materials and Structures, vol. 21, no. 1, Article ID 013001, 2012.
[4]  S. M. Yang and J. W. Chiu, “Smart structures—vibration of composites with piezoelectric materials,” Composite Structures, vol. 25, no. 1–4, pp. 381–386, 1993.
[5]  S. M. Yang and Y. J. Lee, “Interaction of structure vibration and piezoelectric actuation,” Smart Materials and Structures, vol. 3, no. 4, pp. 494–500, 1994.
[6]  S. M. Yang and J. J. Bian, “Vibration suppression experiments on composite laminated plates using an embedded piezoelectric sensor and actuator,” Smart Materials and Structures, vol. 5, no. 4, pp. 501–507, 1996.
[7]  S. M. Yang and C. W. Chen, “Application of single mode optical fiber sensors in structural vibration suppression,” Journal of Intelligent Material Systems and Structures, vol. 7, no. 1, pp. 71–77, 1996.
[8]  S. M. Yang and J. A. Jeng, “Vibration control of a composite plate with embedded optical fiber sensor and piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 5, pp. 393–400, 1997.
[9]  S. M. Yang and G. S. Lee, “Vibration control of smart structures by using neural networks,” Journal of Dynamic Systems, Measurement and Control, vol. 119, no. 1, pp. 34–39, 1997.
[10]  S. M. Yang and G. S. Lee, “System identification of smart structures using neural networks,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 10, pp. 883–890, 1997.
[11]  H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation,” Engineering Structures, vol. 24, no. 1, pp. 5–11, 2002.
[12]  C. A. Jeng, S. M. Yang, and J. N. Lin, “Multi-mode control of structures by using neural networks with marquardt algorithms,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 12, pp. 1035–1043, 1997.
[13]  S. M. Yang, C. C. Hung, and K. H. Chen, “Design and fabrication of a smart layer module in composite laminated structures,” Smart Materials and Structures, vol. 14, no. 2, pp. 315–320, 2005.
[14]  S. M. Yang and C. A. Jeng, “Structural vibration suppression by concurrent piezoelectric sensor and actuator,” Smart Materials and Structures, vol. 5, no. 6, pp. 806–813, 1996.
[15]  J. Zhao, J. Tang, and K. W. Wang, “Anomaly amplification for damage detection of periodic structures via piezoelectric transducer networking,” Smart Materials and Structures, vol. 20, no. 10, Article ID 105006, 2011.
[16]  C. L. Su, S. M. Yang, and W. L. Huang, “A two-stage algorithm integrating genetic algorithm and modified Newton method for neural network training in engineering systems,” Expert Systems with Applications, vol. 38, no. 10, pp. 12189–12194, 2011.
[17]  S. M. Yang, C. J. Chen, and W. L. Huang, “Structural vibration suppression by a neural-network controller with a mass-damper actuator,” Journal of Vibration and Control, vol. 12, no. 5, pp. 495–508, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413