全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Active Vibration Control of a Microactuator for the Hard Disk Drive Using Self-Sensing Actuation

DOI: 10.1155/2012/920747

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the self-sensing control of a microactuator for hard disk drives. The microactuator uses a PZT actuator pair installed on the suspension assembly. The self-sensing microactuator forms a combined sensing and actuation mechanism. Direct velocity feedback and positive position feedback are used in this paper. Our experimental results show that both strategies are effective in suppressing vibrational modes and successfully demonstrate the feasibility of using a self-sensing actuator on an HDD suspension assembly. 1. Introduction A suspension assembly in a hard disk drive (HDD) is subject to excitation by many disturbances, including the airflow due to the rapidly spinning disks, and noncircular track motion of the head and slider due to resonance in the components. A servo system that can cope with these problems requires a very high servo bandwidth and position error signal sampling frequency. In conventional servo systems, the sampling frequency is limited by data storage efficiency. The desire to more effectively suppress the effect of disturbances has led many researchers to propose the addition of more sensors and actuators. One example which has been proposed is to use a piezoelectric actuator on the suspension in a dual-stage system with one of the two strips as the sensor and the other as the actuator [1, 2]. This, however, reduces the effectiveness of the actuator by half and is not efficient. An alternate approach is to use it as a self-sensing microactuator [3–9], which is the subject of this paper. For dual-stage servo system, the performance of self-sensing actuator systems exceeds that of other vibration compensation systems. We implemented two active strategies in order to experimentally demonstrate the effectiveness of a self-sensing system in structural vibration control. The strategies are direct velocity feedback (DVF) and positive position feedback (PPF). DVF, also known as strain rate feedback (SRF) has been used in the active damping of a flexible space structure [10]. In DVF, the structural velocity coordinate is fed back to the compensator and the compensator velocity coordinate multiplied by a negative gain is applied to the structure. DVF has a wide active damping region and can stabilize more than one mode given sufficient bandwidth. In PPF, the structural position coordinate is fed directly to the compensator where a scalar gain is applied and the result sent to the structure [11, 12]. PPF offers quick damping for a particular mode provided the modal characteristics are known. PPF is also easy to implement.

References

[1]  Y. Li, R. Horowitz, and R. Evans, “Vibration control of a PZT actuated suspension dual-stage servo system using a PZT sensor,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 932–937, 2003.
[2]  Y. Li, F. Marcassa, R. Horowitz, R. Oboe, and R. Evans, “Track-following control with active vibration damping of a PZT-actuated suspension dual-stage servo system,” in Proceedings of the American Control Conference, vol. 3, pp. 2553–2559, Denver, Colo, USA, 2003.
[3]  H. Yamada, M. Sasaki, and Y. Nam, “Control of a micro-actuator for hard disk drives using self-sensing actuator,” International Journal of Applied Electromagnetics and Mechanics, vol. 24, no. 3-4, pp. 247–259, 2006.
[4]  J. J. Dosch, D. J. Inman, and E. Garcia, “Self-sensing piezoelectric actuator for collocated control,” Journal of Intelligent Material Systems and Structures, vol. 3, no. 1, pp. 166–185, 1992.
[5]  Y. Nam and M. Sasaki, “Strain rate self-sensing for a cantilevered piezoelectric beam,” KSME International Journal, vol. 16, no. 3, pp. 310–319, 2002.
[6]  M. Okugawa and M. Sasaki, “System identification and controller design of a self-sensing piezoelectric cantilever structure,” Journal of Intelligent Material Systems and Structures, vol. 13, no. 4, pp. 241–252, 2002.
[7]  Y. Nam, J. Yoon, and M. Sasaki, “End point motion estimation of a cantilevered piezoelectric beam,” JSME International Journal Series C, vol. 45, no. 3, pp. 722–729, 2002.
[8]  H. Yamada, M. Sasaki, and Y. Nam, “Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 1, pp. 113–123, 2008.
[9]  M. Sasaki, K. Fujihara, Y. Nam, S. Ito, and Y. Inoue, “Two-degree-of-freedom control of a self-sensing micro-actuator for HDD,” International Journal of Applied Electromagnetics and Mechanics, vol. 36, no. 1-2, pp. 159–166, 2011.
[10]  M. J. Balas, “Direct velocity feedback control of large space structure,” Journal of Guidance, Control, and Dynamics, vol. 2, no. 3, pp. 252–253, 1979.
[11]  C. J. Goh and T. K. Caughey, “On the stability problem caused by finite actuator dynamics in the collocated control of large space structure,” International Journal of Control, vol. 41, no. 3, pp. 787–802, 1985.
[12]  J. L. Fanson and T. K. Caughey, “Positive position feedback control for large space structures,” American Institute of Aeronautics and Astronautics Journal, vol. 28, no. 4, pp. 717–724, 1990.
[13]  G. Song and B. N. Agrawal, “Vibration suppression of flexible spacecraft during attitude control,” Acta Astronautica, vol. 49, no. 2, pp. 73–83, 2001.
[14]  C. K. Pang, G. Guo, B. M. Chen, and T. H. Lee, “Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 3, pp. 328–338, 2006.
[15]  K. W. Chan and W. H. Liao, “Self-sensing actuators for adaptive vibration control of hard disk drives,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '08), pp. 665–670, August 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133