全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermaly Active Structures for Shape Morphing Applications

DOI: 10.1155/2012/530217

Full-Text   Cite this paper   Add to My Lib

Abstract:

For shape morphing application, thermal activation coupling to a bimetallic strip effect can be a substitute for classical actuators, piezoelectrical or shape memory alloys. The controlled behaviour of composite material (CBCM) is a thermaly activated composite material. The thermal activation is made thanks to carbon yarns which are connected to a power supply. If the anisotropy of the structure is well organized, the desired deformation is reached when the temperature within the composite is rising. To obtain a CBCM morphing composite structure, it is necessary to design a specific structure. The aim of this work is to show that it is possible to adapt the CBCM principle in order to transform any kind of classical composite structure to an active structure. The first part of this work consists in presenting the experimental results for two examples of composite beams. The second part is about the active structure FEM modeling and the development of adapted tools for this particular design. 1. Introduction Because of their capacity of actuation, morphing structures are used to simplify mechanisms by reducing the number of moving parts. Three main actuation technologies are commonly used: piezoelectricity, shape memory alloys, or thermal effect. In the case of a structure with bistable effect, these technologies are used to activate the shape changing by piezoactuation [1–3], SMA actuation [4–6], and thermal actuation [7–9]. The field of applications for bistable structures is limited because they have only two positions of stability witch are not adjustable and link to the structure geometry. In the case of standard not bistable composite structures, the main problem is the link between the composite and the actuator. Many works can be found with SMA [10, 11] actuators or piezoactuators like macro-fiber composite (MFC) [12, 13], but the interface strength between the actuator and the composite plays a crucial role in the time life of the structure that is a limit especially when the rigidity of the composite structure is high. To overcome problems of bonding between the actuator and the structure, the bimetallic strip effect coupled to an internal thermal actuation can be a solution. Indeed the whole structure can be considered as an actuator, and the problems of interface decohesion are not concentrated at the interface actuator/structure but distributed all along the interfaces of the laminate composite. Controlled behaviour composite material (CBCM) [14–18] is a thermal actuator developed ten years ago. There are two different ways to use the CBCM

References

[1]  M. R. Schultz, M. W. Hyer, R. B. Williams, W. K. Wilkie, and D. J. Inman, “Snap-through of unsymmetric laminates using piezocomposite actuators,” Composites Science and Technology, vol. 66, no. 14, pp. 2442–2448, 2006.
[2]  P. Giddings, C. R. Bowen, R. Butler, and H. A. Kim, “Characterisation of actuation properties of piezoelectric bi-stable carbon-fibre laminates,” Composites Part A, vol. 39, no. 4, pp. 697–703, 2008.
[3]  M. Gude, W. Hufenbach, and C. Kirvel, “Piezoelectrically driven morphing structures based on bistable unsymmetric laminates,” Composite Structures, vol. 93, no. 2, pp. 377–382, 2011.
[4]  W. Hufenbach, M. Gude, and A. Czulak, “Actor-initiated snap-through of unsymmetric composites with multiple deformation states,” Journal of Materials Processing Technology, vol. 175, no. 1–3, pp. 225–230, 2006.
[5]  W. Hufenbach, M. Gude, and L. Kroll, “Design of multistable composites for application in adaptive structures,” Composites Science and Technology, vol. 62, no. 16, pp. 2201–2207, 2002.
[6]  M. L. Dano and M. W. Hyer, “SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates,” International Journal of Solids and Structures, vol. 40, no. 22, pp. 5949–5972, 2003.
[7]  P. F. Giddings, C. R. Bowen, A. I. T. Salo, H. A. Kim, and A. Ive, “Bistable composite laminates: effects of laminate composition on cured shape and response to thermal load,” Composite Structures, vol. 92, no. 9, pp. 2220–2225, 2010.
[8]  F. Mattioni, P. M. Weaver, K. D. Potter, and M. I. Friswell, “Analysis of thermally induced multistable composites,” International Journal of Solids and Structures, vol. 45, no. 2, pp. 657–675, 2008.
[9]  S. Daynes and P. Weaver, “Analysis of unsymmetric CFRP-metal hybrid laminates for use in adaptive structures,” Composites Part A, vol. 41, no. 11, pp. 1712–1718, 2010.
[10]  Y. J. Zheng, L. S. Cui, and J. Schrooten, “Basic design guidelines for SMA/epoxy smart composites,” Materials Science and Engineering A, vol. 390, no. 1-2, pp. 139–143, 2005.
[11]  G. Zhou and P. Lloyd, “Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires,” Composites Science and Technology, vol. 69, no. 13, pp. 2034–2041, 2009.
[12]  P. Binette, M. L. Dano, and G. Gendron, “Active shape control of composite structures under thermal loading,” Smart Materials and Structures, vol. 18, no. 2, Article ID 025007, 2009.
[13]  M. L. Dano, M. Gakwaya, and B. Jullière, “Compensation of thermally induced distortion in composite structures using macro-fiber composites,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 2, pp. 225–233, 2008.
[14]  F. Laurent, “Continuously deformable and controllable composite material,” WO 2005084936, 2005.
[15]  H. Drobez, G. L'Hostis, K. Gautier, F. Laurent, and B. Durand, “A new active composite,” Smart Materials and Structures, vol. 18, Article ID 025020, 2009.
[16]  K. B. Gautier, G. L'Hostis, F. Laurent, and B. Durand, “Mechanical performances of a thermal activated composite,” Composites Science and Technology, vol. 69, no. 15-16, pp. 2633–2639, 2009.
[17]  G. Trakakis and C. Galiotis, “Development and testing of a self-deformed composite material,” Composite Structures, vol. 92, no. 2, pp. 306–311, 2010.
[18]  H. Asanuma, O. Haga, J. I. Ohira, G. Hakoda, and K. Kimura, “Proposal of an active composite with embedded sensor,” Science and Technology of Advanced Materials, vol. 3, no. 2, pp. 209–216, 2002.
[19]  H. P. Monner, “Smart material for active noise and vibration reduction,” in Proceedings of the Noise and Vibration Emerging Methods, pp. 18–21, Saint Raphael, France, April 2005.
[20]  H. Drobez, G. L'hostis, K. Buet Gautier, F. Laurent, and B. Durand, “Thermomechanical modelization of a new active material,” Journal of Intelligent Material Systems and Structures, vol. 20, no. 13, pp. 1541–1552, 2009.
[21]  A. Collaine, J. M. Freyburger, G. l'Hostis, F. Laurent, and B. Durand, “The controlled behaviour of composite material model for control,” Experimental Techniques, vol. 33, no. 5, pp. 44–49, 2009.
[22]  A. Collaine, J. M. Freyburger, and B. Durand, “CBCM thermal and electrical properties identification and proposition for the control,” in Proceedings of the 11th AUTEX World Textile Conference, June 2011, session poster.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133