全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

DOI: 10.1155/2012/160956

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were compared with each other. The material used is the PMN-25?PT single crystal that is a very interesting material in the framework of energy harvesting and sensor applications. 1. Introduction Small, portable, and lightweight power generation systems are currently in very high demand in commercial markets, due to a dramatic increase in the use of personal electronics and communication equipments. The simple way to satisfy these demands is to utilize batteries; however, nonrechargeable batteries are becoming useless upon discharging, and rechargeable batteries require portable power generation units to recharge them. Thus, a portable small-scale power generation system that can either replace batteries entirely or recharge them to extend their lifetime is of considerable interest. There are several different classes of small-scale power generators currently being researched. The power generation technique that is investigated in this study is the thermodielectric power generation system, which is somewhat similar to thermoelectric power generation [1]. Some possible ambient energy sources are thermal energy, solar energy, or mechanical energy. Harvesting energy from such renewable sources has stimulated important research efforts over the past years [2–5]. Thermal energy is a source available everywhere. Also, electronics advances directed the researchers towards completely autonomous microchips embedding their own energy source. Furthermore, proposing self-powered devices opens new application possibilities for the systems with limited accessibility such as biomedical implants, structure embedded microsensors, or safety monitoring devices. Thermodielectric power generation utilizes the pyroelectric effect to convert heat to useful electricity. Pyroelectricity has been observed in different crystals and ceramics [6]. Materials with high pyroelectric activity or those exhibiting a transition can be used for energy harvesting [7, 8]. The pyroelectric effect may be used for temperature/heat sensors or energy harvesting; on the contrary the electrocaloric effect may be used

References

[1]  G. S. Nolas, Thermoelectrics: Basic Principles and New Materials Development, Springer, Berlin, Germany, 2001.
[2]  R. Want, K. I. Farkas, and C. Narayanaswami, “Energy harvesting and conservation,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 14–17, 2005.
[3]  S. Roundy, E. S. Leland, J. Baker et al., “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 28–36, 2005.
[4]  E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, “A comparison between several vibration-powered piezoelectric generators for standalone systems,” Sensors and Actuators A, vol. 126, no. 2, pp. 405–416, 2006.
[5]  A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, and D. Guyomar, “Single crystals and nonlinear process for outstanding vibration-powered electrical generators,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 4, pp. 673–683, 2006.
[6]  L. Kouchachvili and M. Ikura, “Pyroelectric conversion-effects of P(VDF-TrFE) preconditioning on power conversion,” Journal of Electrostatics, vol. 65, no. 3, pp. 182–188, 2007.
[7]  A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, and S. Mohammadi, “Nonlinear pyroelectric energy harvesting from relaxor single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 4, pp. 693–698, 2009.
[8]  D. Guyoniar, S. Pruvost, and G. Sebald, “Energy harvesting based on FE-FE transition in ferroelectric single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 2, Article ID 4460862, pp. 279–285, 2008.
[9]  A. Khodayari and S. Mohammadi, “Solid-state cooling line based on the electrocaloric effect,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 58, no. 3, pp. 503–508, 2011.
[10]  G. Sebald, L. Seveyrat, D. Guyomar, L. Lebrun, B. Guiffard, and S. Pruvost, “Electrocaloric and pyroelectric properties of 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 single crystals,” Journal of Applied Physics, vol. 100, no. 12, Article ID 124112, 2006.
[11]  G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, “Electrocaloric properties of high dielectric constant ferroelectric ceramics,” Journal of the European Ceramic Society, vol. 27, no. 13–15, pp. 4021–4024, 2007.
[12]  A. Sharma, Z. G. Ban, S. P. Alpay, and J. V. Mantese, “Pyroelectric response of ferroelectric thin films,” Journal of Applied Physics, vol. 95, no. 7, pp. 3618–3625, 2004.
[13]  D. Guyomar, G. Sebald, B. Guiffard, and L. Seveyrat, “Ferroelectric electrocaloric conversion in 0.75(PbMg1/3Nb2/3O3)-0.25(PbTiO3) ceramics,” Journal of Physics D, vol. 39, no. 20, article 029, pp. 4491–4496, 2006.
[14]  W. H. Clingman and R. G. Moore, “Application of ferroelectricity to energy conversion processes,” Journal of Applied Physics, vol. 32, no. 4, pp. 675–681, 1961.
[15]  E. Fatuzzo, H. Kiess, and R. Nitsche, “Theoretical efficiency of pyroelectric power converters,” Journal of Applied Physics, vol. 37, no. 2, pp. 510–516, 1966.
[16]  J. A. Gonzalo, “Ferroelectric materials as energy converters,” Ferroelectrics, vol. 11, no. 1, pp. 423–430, 1976.
[17]  J. E. Drummond, V. Fargo, J. Ream, H. Reed, J. M. Briuscoe, and D. Brown, “Demonstration of a high power density electro-caloric heat engine,” Ferroelectrics, vol. 27, no. 4, pp. 215–218, 1980.
[18]  R. B. Olsen, D. A. Bruno, J. M. Briscoe, and E. W. Jacobs, “Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer,” Journal of Applied Physics, vol. 57, no. 11, pp. 5036–5042, 1985.
[19]  R. Olsen, J. M. Briscoe, D. A. Bruno, and W. F. Butler, “A pyroelectric energy converter which employs regeneration,” Ferroelectrics, vol. 38, no. 1–4, pp. 975–978, 1981.
[20]  R. B. Olsen and D. Evans, “Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material,” Journal of Applied Physics, vol. 54, no. 10, pp. 5941–5944, 1983.
[21]  R. B. Olsen, D. A. Bruno, J. M. Briscoe, and J. Dullea, “Cascaded pyroelectric energy converter,” Ferroelectrics, vol. 59, no. 3-4, pp. 205–219, 1984.
[22]  R. B. Olsen, D. A. Bruno, and J. M. Briscoe, “Pyroelectric conversion cycles,” Journal of Applied Physics, vol. 58, no. 12, pp. 4709–4716, 1985.
[23]  M. Ikura, “Conversion of low-grade heat to electricity using pyroelectric copolymer,” Ferroelectrics, vol. 267, pp. 403–408, 2002.
[24]  J. Grindlay, An Introduction to the Phenomenological Theory of Ferroelectricity, Pergamon Press, Oxford, UK, 1970.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133