全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications

DOI: 10.1155/2012/737416

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lung cancer biology has traditionally focused on genomic and epigenomic deregulation of protein-coding genes to identify oncogenes and tumor suppressors diagnostic and therapeutic targets. Another important layer of cancer biology has emerged in the form of noncoding RNAs (ncRNAs), which are major regulators of key cellular processes such as proliferation, RNA splicing, gene regulation, and apoptosis. In the past decade, microRNAs (miRNAs) have moved to the forefront of ncRNA cancer research, while the role of long noncoding RNAs (lncRNAs) is emerging. Here we review the mechanisms by which miRNAs and lncRNAs are deregulated in lung cancer, the technologies that can be applied to detect such alterations, and the clinical potential of these RNA species. An improved comprehension of lung cancer biology will come through the understanding of the interplay between deregulation of non-coding RNAs, the protein-coding genes they regulate, and how these interactions influence cellular networks and signalling pathways. 1. Introduction The human genome is comprised of less than 2% protein coding genes; however, more than 90% of the genome is transcribed, suggesting that the majority of the transcriptome is comprised of noncoding RNAs—transcripts that lack an open reading frame and as such do not encode a protein [1–4]. However this by no mean implies that ncRNAs lack function, but rather highlights the importance of looking beyond protein-coding genes in order to improve our knowledge of normal and disease biology. ncRNAs are loosely classified into two main categories: small non-coding RNAs (18–200 nucleotides), which includes transcripts such as miRNAs, transfer RNAs (tRNAs), small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs) and some ribosomal RNAs, and long non-coding RNAs (lncRNAs) (200+ nucleotides), a family comprised of pseudogenes, antisense RNA and transcribed ultraconserved regions to name a few (Table 1) [4]. ncRNAs comprise a class of transcripts that until the last few decades was largely overlooked. While some are known to play important roles in the regulation of gene expression, splicing, epigenetic control, chromatin structure and nuclear transport, the function of most ncRNAs remains unknown [5, 6]. Of the species of ncRNAs identified to date, miRNAs, siRNAs, and piRNAs are the most thoroughly investigated. With roles in a number of cellular functions, it is not surprising that the deregulation of ncRNAs has been linked to human disease, including a number of cancers, such as breast, prostate, lung, colon, and liver. Increasing

References

[1]  C. P. Ponting and T. G. Belgard, “Transcribed dark matter: meaning or myth?” Human Molecular Genetics, vol. 19, no. 2, pp. R162–R168, 2010.
[2]  E. Birney, J. A. Stamatoyannopoulos, A. Dutta et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, vol. 447, no. 7146, pp. 799–816, 2007.
[3]  P. Carninci, T. Kasukawa, S. Katayama et al., “The transcriptional landscape of the mammalian genome,” Science, vol. 309, no. 5740, pp. 1559–1563, 2005.
[4]  E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, article 38, 2011.
[5]  T. Hung and H. Y. Chang, “Long noncoding RNA in genome regulation: prospects and mechanisms,” RNA Biology, vol. 7, no. 5, pp. 582–585, 2010.
[6]  R. J. Taft, K. C. Pang, T. R. Mercer, M. Dinger, and J. S. Mattick, “Non-coding RNAs: regulators of disease,” Journal of Pathology, vol. 220, no. 2, pp. 126–139, 2010.
[7]  A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009.
[8]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[9]  M. Sato, D. S. Shames, A. F. Gazdar, and J. D. Minna, “A translational view of the molecular pathogenesis of lung cancer,” Journal of Thoracic Oncology, vol. 2, no. 4, pp. 327–343, 2007.
[10]  R. Aharonov, D. Lebanony, H. Benjamin et al., “Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 2030–2037, 2009.
[11]  A. Markou, E. G. Tsaroucha, L. Kaklamanis, M. Fotinou, V. Georgoulias, and E. S. Lianidou, “Prognostic value of mature MicroRNA-21 and MicroRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR,” Clinical Chemistry, vol. 54, no. 10, pp. 1696–1704, 2008.
[12]  N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006.
[13]  S. L. Yu, H. Y. Chen, G. C. Chang et al., “MicroRNA signature predicts survival and relapse in lung cancer,” Cancer Cell, vol. 13, no. 1, pp. 48–57, 2008.
[14]  G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006.
[15]  P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003.
[16]  S. Bortoluzzi, M. Biasiolo, and A. Bisognin, “microRNA-offset RNAs (moRNAs): by-product spectators or functional players?” Trends in Molecular Medicine, vol. 17, no. 9, pp. 473–474, 2011.
[17]  J. Cheng, J. M. Guo, B. X. Xiao et al., “PiRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells,” Clinica Chimica Acta, vol. 412, no. 17-18, pp. 1621–1625, 2011.
[18]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[19]  J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007.
[20]  J. Winter and S. Diederichs, “MicroRNA biogenesis and cancer,” Methods in Molecular Biology, vol. 676, pp. 3–22, 2011.
[21]  A. Grimson, K. K. H. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P. Bartel, “MicroRNA targeting specificity in mammals: determinants beyond seed pairing,” Molecular Cell, vol. 27, no. 1, pp. 91–105, 2007.
[22]  S. Yekta, I. H. Shih, and D. P. Bartel, “MicroRNA-directed cleavage of HOXB8 mRNA,” Science, vol. 304, no. 5670, pp. 594–596, 2004.
[23]  A. B. Shyu, M. F. Wilkinson, and A. Van Hoof, “Messenger RNA regulation: to translate or to degrade,” The EMBO Journal, vol. 27, no. 3, pp. 471–481, 2008.
[24]  M. V. Iorio and C. M. Croce, “MicroRNAs in cancer: small molecules with a huge impact,” Journal of Clinical Oncology, vol. 27, no. 34, pp. 5848–5856, 2009.
[25]  A. Eulalio, J. Rehwinkel, M. Stricker et al., “Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing,” Genes & Development, vol. 21, no. 20, pp. 2558–2570, 2007.
[26]  A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011.
[27]  L. Zhang, J. Huang, N. Yang et al., “microRNAs exhibit high frequency genomic alterations in human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9136–9141, 2006.
[28]  G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004.
[29]  S. Dacic, L. Kelly, Y. Shuai, and M. N. Nikiforova, “MiRNA expression profiling of lung adenocarcinomas: correlation with mutational status,” Modern Pathology, vol. 23, no. 12, pp. 1577–1582, 2010.
[30]  J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004.
[31]  M. Garofalo, G. Di Leva, G. Romano et al., “miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation,” Cancer Cell, vol. 16, no. 6, pp. 498–509, 2009.
[32]  E. Gallardo, A. Navarro, N. Vi?olas et al., “miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer,” Carcinogenesis, vol. 30, no. 11, pp. 1903–1909, 2009.
[33]  L. Jiang, Q. Huang, S. Zhang et al., “Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells,” BMC Cancer, vol. 10, article 318, 2010.
[34]  X. Wang, C. Ling, Y. Bai, and J. Zhao, “MicroRNA-206 is associated with invasion and metastasis of lung cancer,” Anatomical Record, vol. 294, no. 1, pp. 88–92, 2011.
[35]  P. Y. Lin, S. L. Yu, and P. C. Yang, “MicroRNA in lung cancer,” British Journal of Cancer, vol. 103, no. 8, pp. 1144–1148, 2010.
[36]  O. Wapinski and H. Y. Chang, “Long noncoding RNAs and human disease,” Trends in Cell Biology, vol. 21, no. 6, pp. 354–361, 2011.
[37]  C. Gong and L. E. Maquat, “LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 39 UTRs via Alu eleme,” Nature, vol. 470, no. 7333, pp. 284–290, 2011.
[38]  Y. Kotake, T. Nakagawa, K. Kitagawa et al., “Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15 INK4B tumor suppressor gene,” Oncogene, vol. 30, no. 16, pp. 1956–1962, 2011.
[39]  R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010.
[40]  T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009.
[41]  T. R. Mercer, M. E. Dinger, S. M. Sunkin, M. F. Mehler, and J. S. Mattick, “Specific expression of long noncoding RNAs in the mouse brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 716–721, 2008.
[42]  M. N. Cabili, C. Trapnell, L. Goff, et al., “Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses,” Genes & Development, vol. 25, no. 18, pp. 1915–1927, 2011.
[43]  M. Guttman, J. Donaghey, B. W. Carey, et al., “lincRNAs act in the circuitry controlling pluripotency and differentiation,” Nature, vol. 477, pp. 295–300, 2011.
[44]  J. C. Castle, C. D. Armour, M. L?wer et al., “Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polya-neutral amplification,” PLoS One, vol. 5, no. 7, Article ID e11779, 2010.
[45]  L. Lipovich, R. Johnson, and C.-Y. Lin, “MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA,” Biochimica et Biophysica Acta, vol. 1799, no. 9, pp. 597–615, 2010.
[46]  D. Beysen, J. Raes, B. P. Leroy et al., “Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome,” American Journal of Human Genetics, vol. 77, no. 2, pp. 205–218, 2005.
[47]  W. J. Lukiw, P. Handley, L. Wong, and D. R. C. McLachlan, “BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD),” Neurochemical Research, vol. 17, no. 6, pp. 591–597, 1992.
[48]  P. Jin and S. T. Warren, “Understanding the molecular basis of fragile X syndrome,” Human Molecular Genetics, vol. 9, no. 6, pp. 901–908, 2000.
[49]  J. L. Rinn, M. Kertesz, J. K. Wang et al., “Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs,” Cell, vol. 129, no. 7, pp. 1311–1323, 2007.
[50]  V. Tripathi, J. D. Ellis, Z. Shen et al., “The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation,” Molecular Cell, vol. 39, no. 6, pp. 925–938, 2010.
[51]  H. Osada and T. Takahashi, “let-7 and miR-17-92: small-sized major players in lung cancer development,” Cancer Science, vol. 102, no. 1, pp. 9–17, 2011.
[52]  J. Schultz, P. Lorenz, G. Gross, S. Ibrahim, and M. Kunz, “MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth,” Cell Research, vol. 18, no. 5, pp. 549–557, 2008.
[53]  A. Esquela-Kerscher, P. Trang, J. F. Wiggins et al., “The let-7 microRNA reduces tumor growth in mouse models of lung cancer,” Cell Cycle, vol. 7, no. 6, pp. 759–764, 2008.
[54]  C. D. Johnson, A. Esquela-Kerscher, G. Stefani et al., “The let-7 microRNA represses cell proliferation pathways in human cells,” Cancer Research, vol. 67, no. 16, pp. 7713–7722, 2007.
[55]  Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005.
[56]  S. Diederichs and D. A. Haber, “Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing,” Cancer Research, vol. 66, no. 12, pp. 6097–6104, 2006.
[57]  D. Lodygin, V. Tarasov, A. Epanchintsev et al., “Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer,” Cell Cycle, vol. 7, no. 16, pp. 2591–2600, 2008.
[58]  B. Brueckner, C. Stresemann, R. Kuner et al., “The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function,” Cancer Research, vol. 67, no. 4, pp. 1419–1423, 2007.
[59]  M. W. Nasser, J. Datta, G. Nuovo et al., “Down-regulation of micro-RNA-1 (miR-1) in lung cancer: suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1,” The Journal of Biological Chemistry, vol. 283, no. 48, pp. 33394–33405, 2008.
[60]  M. Fabbri, R. Garzon, A. Cimmino et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15805–15810, 2007.
[61]  M. A. Saunders, H. Liang, and W. H. Li, “Human polymorphism at microRNAs and microRNA target sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3300–3305, 2007.
[62]  A. E. Pasquinelli, B. J. Reinhart, F. Slack et al., “Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA,” Nature, vol. 408, no. 6808, pp. 86–89, 2000.
[63]  M. Wu, N. Jolicoeur, Z. Li et al., “Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs,” Carcinogenesis, vol. 29, no. 9, pp. 1710–1716, 2008.
[64]  Z. Hu, J. Chen, T. Tian et al., “Genetic variants of miRNA sequences and non-small cell lung cancer survival,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2600–2608, 2008.
[65]  T. Tian, Y. Shu, J. Chen et al., “A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 4, pp. 1183–1187, 2009.
[66]  Z. Hu, Y. Shu, Y. Chen et al., “Genetic polymorphisms in the precursor microRNA flanking region and non-small cell lung cancer survival,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 641–648, 2011.
[67]  M. J. Kim, S. S. Yoo, Y. Y. Choi, and J. Y. Park, “A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population,” Lung Cancer, vol. 69, no. 1, pp. 127–129, 2010.
[68]  P. J. Mishra, P. J. Mishra, D. Banerjee, and J. R. Bertino, “MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics,” Cell Cycle, vol. 7, no. 7, pp. 853–858, 2008.
[69]  F. Wang, Y. L. Ma, P. Zhang et al., “A genetic variant in microRNA-196a2 is associated with increased cancer risk: a meta-analysis,” Molecular Biology Reports, vol. 39, no. 1, pp. 269–275, 2011.
[70]  D. Betel, M. Wilson, A. Gabow, D. S. Marks, and C. Sander, “The microRNA.org resource: targets and expression,” Nucleic Acids Research, vol. 36, no. 1, pp. D149–D153, 2008.
[71]  M. Campayo, A. Navarro, N. Vi?olas et al., “A dual role for KRT81: a miR-SNP associated with recurrence in Non-Small-Cell lung cancer and a novel marker of squamous cell lung carcinoma,” PLoS One, vol. 6, no. 7, Article ID e22509, 2011.
[72]  M. Rotunno, Y. Zhao, A. W. Bergen et al., “Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival,” British Journal of Cancer, vol. 103, no. 12, pp. 1870–1874, 2010.
[73]  X. Fang, C. Wu, J. Chang et al., “Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer,” Cancer Research, vol. 71, no. 15, pp. 5175–5181, 2011.
[74]  L. J. Chin, E. Ratner, S. Leng et al., “A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk,” Cancer Research, vol. 68, no. 20, pp. 8535–8540, 2008.
[75]  Y. S. Hong, “Association between microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population,” Journal of Preventive Medicine and Public Health, vol. 44, no. 3, pp. 125–130, 2011.
[76]  H. Chu, M. Wang, D. Shi et al., “Hsa-miR-196a2 Rs11614913 polymorphism contributes to cancer susceptibility: evidence from 15 case-control studies,” PLoS One, vol. 6, no. 3, Article ID e18108, 2011.
[77]  B. D. Harfe, “MicroRNAs in vertebrate development,” Current Opinion in Genetics and Development, vol. 15, no. 4, pp. 410–415, 2005.
[78]  M. Crawford, K. Batte, L. Yu et al., “MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer,” Biochemical and Biophysical Research Communications, vol. 388, no. 3, pp. 483–489, 2009.
[79]  L. Du, J. J. Schageman, Irnov et al., “MicroRNA expression distinguishes SCLC from NSCLC lung tumor cells and suggests a possible pathological relationship between SCLCs and NSCLCs,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 75, 2010.
[80]  K. S. S. Enfield, G. L. Stewart, L. A. Pikor, et al., “MicroRNA gene dosage alterations and drug response in lung cancer,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 474632, 15 pages, 2011.
[81]  R. Hummel, D. J. Hussey, and J. Haier, “MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types,” European Journal of Cancer, vol. 46, no. 2, pp. 298–311, 2010.
[82]  G. J. Weiss, L. T. Bemis, E. Nakajima et al., “EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines,” Annals of Oncology, vol. 19, no. 6, pp. 1053–1059, 2008.
[83]  D. L. Gibbons, W. Lin, C. J. Creighton et al., “Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression,” Genes & Development, vol. 23, no. 18, pp. 2140–2151, 2009.
[84]  D. Barsyte-Lovejoy, S. K. Lau, P. C. Boutros et al., “The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis,” Cancer Research, vol. 66, no. 10, pp. 5330–5337, 2006.
[85]  M. Kondo and T. Takahashi, “Altered genomic imprinting in the IGF2 and H19 genes in human lung cancer,” Nippon Rinsho, vol. 54, no. 2, pp. 492–496, 1996.
[86]  P. T. Wing, T. W. L. Wong, A. H. H. Cheung, C. N. N. Co, and T. K. Tim, “Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR,” RNA, vol. 13, no. 6, pp. 890–898, 2007.
[87]  W. Chen, W. B?cker, J. Brosius, and H. Tiedge, “Expression of neural BC200 RNA in human tumours,” Journal of Pathology, vol. 183, no. 3, pp. 345–351, 1997.
[88]  M. S. Kumar, J. Lu, K. L. Mercer, T. R. Golub, and T. Jacks, “Impaired microRNA processing enhances cellular transformation and tumorigenesis,” Nature Genetics, vol. 39, no. 5, pp. 673–677, 2007.
[89]  S. A. Melo, C. Moutinho, S. Ropero et al., “A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells,” Cancer Cell, vol. 18, no. 4, pp. 303–315, 2010.
[90]  T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy et al., “TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing,” Nature, vol. 436, no. 7051, pp. 740–744, 2005.
[91]  H. Gro?hans and I. Büssing, “MicroRNA biogenesis takes another single hit from microsatellite instability,” Cancer Cell, vol. 18, no. 4, pp. 295–297, 2010.
[92]  S. A. Melo, S. Ropero, C. Moutinho et al., “A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function,” Nature Genetics, vol. 41, no. 3, pp. 365–370, 2009.
[93]  M. S. Kumar, R. E. Pester, C. Y. Chen et al., “Dicer1 functions as a haploinsufficient tumor suppressor,” Genes & Development, vol. 23, no. 23, pp. 2700–2704, 2009.
[94]  I. Lambertz, D. Nittner, P. Mestdagh et al., “Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo,” Cell Death and Differentiation, vol. 17, no. 4, pp. 633–641, 2010.
[95]  Y. Karube, H. Tanaka, H. Osada et al., “Reduced expression of Dicer associated with poor prognosis in lung cancer patients,” Cancer Science, vol. 96, no. 2, pp. 111–115, 2005.
[96]  M. L. Wilbert and G. W. Yeo, “Genome-wide approaches in the study of microRNA biology,” Wiley Interdisciplinary Reviews, vol. 3, no. 5, pp. 491–512, 2011.
[97]  E. A. Gibb, K. S. S. Enfield, G. L. Stewart et al., “Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions,” Oral Oncology, vol. 47, no. 11, pp. 1055–1061, 2011.
[98]  E. A. Gibb, E. A. Vucic, K. S. S. Enfield, et al., “Human cancer long non-coding RNA transcriptomes,” PLoS One, vol. 6, no. 10, Article ID e25915, 2011.
[99]  E. Meiri, A. Levy, H. Benjamin et al., “Discovery of microRNAs and other small RNAs in solid tumors,” Nucleic Acids Research, vol. 38, no. 18, Article ID gkq376, pp. 6234–6246, 2010.
[100]  C. Lu, S. S. Tej, S. Luo, C. D. Haudenschild, B. C. Meyers, and P. J. Green, “Genetics: elucidation of the small RNA component of the transcriptome,” Science, vol. 309, no. 5740, pp. 1567–1569, 2005.
[101]  C. Garnis, T. P. H. Buys, and W. L. Lam, “Genetic alteration and gene expression modulation during cancer progression,” Molecular Cancer, vol. 3, article 9, 2004.
[102]  L. P. Lim, N. C. Lau, E. G. Weinstein, et al., “The microRNAs of Caenorhabditis elegans,” Genes & Development, vol. 17, no. 8, pp. 991–1008, 2003.
[103]  I. L. Hofacker, “Vienna RNA secondary structure server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3429–3431, 2003.
[104]  N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, “An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 858–862, 2001.
[105]  M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001.
[106]  G. Hutvágner, J. McLachlan, A. E. Pasquinelli, é. Bálint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let -7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001.
[107]  A. MacHado-Lima, H. A. Del Portillo, and A. M. Durham, “Computational methods in noncoding RNA research,” Journal of Mathematical Biology, vol. 56, no. 1-2, pp. 15–49, 2008.
[108]  J. Gorodkin and I. L. Hofacker, “From structure prediction to genomic screens for novel non-coding RNAs,” PLoS Computational Biology, vol. 7, no. 8, Article ID e1002100, 2011.
[109]  C. S. Chan, O. Elemento, and S. Tavazoie, “Revealing posttranscriptional regulatory elements through network-level conservation,” PLoS Computational Biology, vol. 1, no. 7, pp. 0564–0578, 2005.
[110]  A. Adai, C. Johnson, S. Mlotshwa et al., “Computational prediction of miRNAs in Arabidopsis thaliana,” Genome Research, vol. 15, no. 1, pp. 78–91, 2005.
[111]  X. Xie, J. Lu, E. J. Kulbokas et al., “Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals,” Nature, vol. 434, no. 7031, pp. 338–345, 2005.
[112]  B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005.
[113]  X. Wang and I. M. El Naqa, “Prediction of both conserved and nonconserved microRNA targets in animals,” Bioinformatics, vol. 24, no. 3, pp. 325–332, 2008.
[114]  B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human MicroRNA targets,” PLoS Biology, vol. 2, no. 11, Article ID e363, 2004.
[115]  U. Lehmann and H. Kreipe, “Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies,” Methods, vol. 25, no. 4, pp. 409–418, 2001.
[116]  K. R. M. Leite, J. M. S. Canavez, S. T. Reis et al., “miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue,” Urologic Oncology, vol. 29, no. 5, pp. 533–537, 2011.
[117]  M. Cronin, M. Pho, D. Dutta et al., “Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues,” American Journal of Pathology, vol. 164, no. 1, pp. 35–42, 2004.
[118]  M. Doleshal, A. A. Magotra, B. Choudhury, B. D. Cannon, E. Labourier, and A. E. Szafranska, “Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues,” Journal of Molecular Diagnostics, vol. 10, no. 3, pp. 203–211, 2008.
[119]  R. Klopfleisch, A.T. Weiss, and A. D. Gruber, “Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues,” Histology and Histopathology, vol. 26, no. 6, pp. 797–810, 2011.
[120]  X. Zhang, J. Chen, T. Radcliffe, D. P. LeBrun, V. A. Tron, and H. Feilotter, “An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples,” Journal of Molecular Diagnostics, vol. 10, no. 6, pp. 513–519, 2008.
[121]  Y. Xi, G. Nakajima, E. Gavin et al., “Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples,” RNA, vol. 13, no. 10, pp. 1668–1674, 2007.
[122]  B. Hasemeier, M. Christgen, H. Kreipe, and U. Lehmann, “Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labelled bead technology,” BMC Biotechnology, vol. 8, article 90, 2008.
[123]  U. Siebolts, H. Vamholt, U. Drebber, H. P. Dienes, C. Wickenhauser, and M. Odenthal, “Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR,” Journal of Clinical Pathology, vol. 62, no. 1, pp. 84–88, 2009.
[124]  A. B. Hui, W. Shi, P. C. Boutros et al., “Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues,” Laboratory Investigation, vol. 89, no. 5, pp. 597–606, 2009.
[125]  A. H. Beck, Z. Weng, D. M. Witten et al., “3′-end Sequencing for Expression Quantification (3SEQ) from archival tumor samples,” PLoS One, vol. 5, no. 1, Article ID e8768, 2010.
[126]  R. Hubaux, D. D. Becker-Santos, K. S. S. Enfield, S. Lam, W. L. Lam, and V. D. Martinez, “MicroRNAs as biomarkers for clinical features of lung cancer,” Metabolomics. In press.
[127]  X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008.
[128]  L. J. Chin and F. J. Slack, “A truth serum for cancer microRNAs have major potential as cancer biomarkers,” Cell Research, vol. 18, no. 10, pp. 983–984, 2008.
[129]  L. Yu, N. W. Todd, L. Xing et al., “Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers,” International Journal of Cancer, vol. 127, no. 12, pp. 2870–2878, 2010.
[130]  X. Tan, W. Qin, L. Zhang, et al., “A Five-microRNA signature for squamous cell lung carcinoma (SCC) diagnosis and Hsa-miR-31 for SCC prognosis,” Clinical Cancer Research. In press.
[131]  X. Chen, Z. Hu, W. Wang et al., “Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis,” International Journal of Cancer, vol. 7, no. 6, pp. 1620–1628, 2011.
[132]  K. M. Foss, C. Sima, D. Ugolini, M. Neri, K. E. Allen, and G. J. Weiss, “MiR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 3, pp. 482–488, 2011.
[133]  J. Shen, Z. Liu, and N. W. Todd, “Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers,” BMC Cancer, vol. 1, article 374, 2011.
[134]  M. Seike, A. Goto, T. Okano et al., “MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12085–12090, 2009.
[135]  M. Tinzl, M. Marberger, S. Horvath, and C. Chypre, “DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer,” European Urology, vol. 46, no. 2, pp. 182–187, 2004.
[136]  D. Hessels, J. M. T. Klein Gunnewiek, I. Van Oort et al., “DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer,” European Urology, vol. 44, no. 1, pp. 8–16, 2003.
[137]  K. Panzitt, M. M. O. Tschernatsch, C. Guelly et al., “Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA,” Gastroenterology, vol. 132, no. 1, pp. 330–342, 2007.
[138]  M. Saito, A. J. Schetter, S. Mollerup et al., “The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts,” Clinical Cancer Research, vol. 17, no. 7, pp. 1875–1882, 2011.
[139]  H. Ebi, T. Sato, N. Sugito et al., “Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers,” Oncogene, vol. 28, no. 38, pp. 3371–3379, 2009.
[140]  X. Wu, M. G. Piper-Hunter, M. Crawford et al., “MicroRNAs in the pathogenesis of lung cancer,” Journal of Thoracic Oncology, vol. 4, no. 8, pp. 1028–1034, 2009.
[141]  Z. Hu, X. Chen, Y. Zhao et al., “Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1721–1726, 2010.
[142]  Y. Lu, R. Govindan, L. Wang, et al., “MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer,” Carcinogenesis. In press.
[143]  J. F. Wiggins, L. Ruffino, K. Kelnar et al., “Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34,” Cancer Research, vol. 70, no. 14, pp. 5923–5930, 2010.
[144]  Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010.
[145]  Z. Chen, H. Zeng, Y. Guo et al., “MiRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 151, 2010.
[146]  M. K. Muniyappa, P. Dowling, M. Henry et al., “MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines,” European Journal of Cancer, vol. 45, no. 17, pp. 3104–3118, 2009.
[147]  L. Galluzzi, E. Morselli, I. Vitale et al., “miR-181a and miR-630 regulate cisplatin-induced cancer cell death,” Cancer Research, vol. 70, no. 5, pp. 1793–1803, 2010.
[148]  W. C. Cho, “MicroRNAs as therapeutic targets for lung cancer,” Zhongguo Fei Ai Za Zhi, vol. 13, no. 12, pp. C58–C60, 2010.
[149]  A. G. Bader, D. Brown, and M. Winkler, “The promise of microRNA replacement therapy,” Cancer Research, vol. 70, no. 18, pp. 7027–7030, 2010.
[150]  S. P. Nana and C. M. Croce, “MicroRNAs as therapeutic targets in cancer,” Translational Research, vol. 157, no. 4, pp. 216–225, 2011.
[151]  J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with ‘antagomirs’,” Nature, vol. 438, no. 7068, pp. 685–689, 2005.
[152]  R. Garzon, G. Marcucci, and C. M. Croce, “Targeting microRNAs in cancer: rationale, strategies and challenges,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 775–789, 2010.
[153]  J. Elmén, M. Lindow, A. Silahtaroglu et al., “Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver,” Nucleic Acids Research, vol. 36, no. 4, pp. 1153–1162, 2008.
[154]  S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell, “Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps,” Nature, vol. 460, no. 7254, pp. 479–486, 2009.
[155]  G. Nunnari and M. J. Schnell, “MicroRNA-122: a therapeutic target for hepatitis C virus (HCV) infection,” Frontiers in Bioscience, vol. 3, pp. 1032–1037, 2011.
[156]  K. L. Thu, R. Chari, W. W. Lockwood, S. Lam, and W. L. Lam, “miR-101 DNA copy loss is a prominent subtype specific event in lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 9, pp. 1594–1598, 2011.
[157]  J. G. Zhang, J. F. Guo, D. L. Liu, Q. Liu, and J. J. Wang, “MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2,” Journal of Thoracic Oncology, vol. 6, no. 4, pp. 671–678, 2011.
[158]  H. Y. Zou, Q. Li, J. H. Lee et al., “An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms,” Cancer Research, vol. 67, no. 9, pp. 4408–4417, 2007.
[159]  M. S. Ebert, J. R. Neilson, and P. A. Sharp, “MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells,” Nature Methods, vol. 4, no. 9, pp. 721–726, 2007.
[160]  J. Wang, X. Liu, H. Wu et al., “CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer,” Nucleic Acids Research, vol. 38, no. 16, pp. 5366–5383, 2010.
[161]  L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi, “A coding-independent function of gene and pseudogene mRNAs regulates tumour biology,” Nature, vol. 465, no. 7301, pp. 1033–1038, 2010.
[162]  A. Alimonti, A. Carracedo, J. G. Clohessy et al., “Subtle variations in Pten dose determine cancer susceptibility,” Nature Genetics, vol. 42, no. 5, pp. 454–458, 2010.
[163]  M. Ghildiyal and P. D. Zamore, “Small silencing RNAs: an expanding universe,” Nature Reviews Genetics, vol. 10, no. 2, pp. 94–108, 2009.
[164]  C. L. Holley and V. K. Topkara, “An introduction to small non-coding RNAs: miRNA and snoRNA,” Cardiovascular Drugs and Therapy, vol. 25, no. 2, pp. 151–159, 2011.
[165]  E. M. Phizicky and A. K. Hopper, “tRNA biology charges to the front,” Genes and Development, vol. 24, no. 17, pp. 1832–1860, 2010.
[166]  K. M. Hannan, R. D. Hannan, and L. I. Rothblum, “Transcription by RNA polymerase I,” Frontiers in Bioscience, vol. 3, pp. d376–d398, 1998.
[167]  R. J. Taft, C. D. Kaplan, C. Simons, and J. S. Mattick, “Evolution, biogenesis and function of promoter-associated RNAs,” Cell Cycle, vol. 8, no. 15, pp. 2332–2338, 2009.
[168]  P. Scaruffi, “The transcribed-ultraconserved regions: a novel class of long noncoding RNAs involved in cancer susceptibility,” TheScientificWorldJournal, vol. 11, pp. 340–352, 2011.
[169]  I. D'Errico, G. Gadaleta, and C. Saccone, “Pseudogenes in metazoa: origin and features,” Brief Funct Genomic Proteomic, vol. 3, no. 2, pp. 157–167, 2004.
[170]  E. G. Wagner and K. Fl?rdh, “Antisense RNAs everywhere?” Trends in Genetics, vol. 18, no. 5, pp. 223–226, 2002.
[171]  Z. X. Wang, H. B. Bian, J. R. Wang, Z. X. Cheng, K. M. Wang, and W. De, “Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer,” Journal of Surgical Oncology, vol. 104, no. 7, pp. 847–851, 2011.
[172]  H. Kanzaki, S. Ito, H. Hanafusa et al., “Identification of direct targets for the miR-17-92 cluster by proteomic analysis,” Proteomics, vol. 11, no. 17, pp. 3531–3539, 2011.
[173]  J. Beane, J. Vick, F. Schembri et al., “Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq,” Cancer Prevention Research, vol. 4, no. 6, pp. 803–817, 2011.
[174]  J. G. Zhang, J. J. Wang, F. Zhao, Q. Liu, K. Jiang, and G. H. Yang, “MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC),” Clinica Chimica Acta, vol. 411, no. 11-12, pp. 846–852, 2010.
[175]  Y. Sun, Y. Bai, F. Zhang, Y. Wang, Y. Guo, and L. Guo, “miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7,” Biochemical and Biophysical Research Communications, vol. 391, no. 3, pp. 1483–1489, 2010.
[176]  M. Kohda, H. Hoshiya, M. Katoh et al., “Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma,” Molecular Carcinogenesis, vol. 31, no. 4, pp. 184–191, 2001.
[177]  M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information,” Nucleic Acids Research, vol. 9, no. 1, pp. 133–148, 1981.
[178]  E. Rivas and S. R. Eddy, “A dynamic programming algorithm for RNA structure prediction including pseudoknots,” Journal of Molecular Biology, vol. 285, no. 5, pp. 2053–2068, 1999.
[179]  J. Reeder and R. Giegerich, “Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics,” BMC Bioinformatics, vol. 5, article 104, 2004.
[180]  A. Sczyrba, J. Krüger, H. Mersch, S. Kurtz, and R. Giegerich, “RNA-related tools on the Bielefeld Bioinformatics Server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3767–3770, 2003.
[181]  E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy, “Infernal 1.0: inference of RNA alignments,” Bioinformatics, vol. 25, no. 10, pp. 1335–1337, 2009.
[182]  S. Washietl, I. L. Hofacker, and P. F. Stadler, “Fast and reliable prediction of noncoding RNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2454–2459, 2005.
[183]  E. Rivas and S. R. Eddy, “Noncoding RNA gene detection using comparative sequence analysis,” BMC Bioinformatics, vol. 2, article 8, 2001.
[184]  J. S. Pedersen, G. Bejerano, A. Siepel et al., “Identification and classification of conserved RNA secondary structures in the human genome,” PLoS Computational Biology, vol. 2, no. 4, article e33, 2006.
[185]  A. O. Harmanci, G. Sharma, and D. H. Mathews, “Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign,” BMC Bioinformatics, vol. 8, article 130, 2007.
[186]  J. Gorodkin, L. J. Heyer, and G. D. Stormo, “Finding the most significant common sequence and structure motifs in a set of RNA sequences,” Nucleic Acids Research, vol. 25, no. 18, pp. 3724–3732, 1997.
[187]  Z. Yao, Z. Weinberg, and W. L. Ruzzo, “CMfinder—a covariance model based RNA motif finding algorithm,” Bioinformatics, vol. 22, no. 4, pp. 445–452, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413