全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

How Can Satellite DNA Divergence Cause Reproductive Isolation? Let Us Count the Chromosomal Ways

DOI: 10.1155/2012/430136

Full-Text   Cite this paper   Add to My Lib

Abstract:

Satellites are one of the most enigmatic parts of the eukaryotic genome. These highly repetitive, noncoding sequences make up as much as half or more of the genomic content and are known to play essential roles in chromosome segregation during meiosis and mitosis, yet they evolve rapidly between closely related species. Research over the last several decades has revealed that satellite divergence can serve as a formidable reproductive barrier between sibling species. Here we highlight several key studies on Drosophila and other model organisms demonstrating deleterious effects of satellites and their rapid evolution on the structure and function of chromosomes in interspecies hybrids. These studies demonstrate that satellites can impact chromosomes at a number of different developmental stages and through distinct cellular mechanisms, including heterochromatin formation. These findings have important implications for how loci that cause postzygotic reproductive isolation are viewed. 1. Introduction Decades ago when researchers began purifying DNA from eukaryotes using cesium chloride gradients, they observed bands of DNA that were distinct from the major genomic bands. The sequences comprising these ancillary bands were named satellites—a term from Greek meaning “followers of a superior entity”—and were found to separate from the other sequences due to their adenosine- and thymine-rich base pair compositions. Since their discovery, satellites have proven to be one of the most intriguing parts of the genome, owing to their high abundance, rapid evolutionary change, and a growing body of evidence indicating that they can impact speciation. The abundance of satellites varies widely in eukaryotic genomes, from effectively 0% in yeast species such as Schizosaccharomyces pombe to 25–50% or more in Drosophila and mammalian species [2–4]. Individual satellite monomers also vary dramatically in their monomer length, from the D. melanogaster pentameric monomer, AATAT, to more complex monomers such as the 972-bp centromeric satellite in the Indian muntjac [5]. Satellite monomers such as these are organized into arrays, or blocks, of tens to thousands of tandem copies located in the centromeres, the telomeres, and their surrounding regions. Indeed, the Y chromosome in many higher eukaryotes consists almost entirely of satellites. Despite their abundance, satellites are nonprotein coding and were therefore hypothesized to be genomic “junk” [6] or even selfish genetic elements [7]. Contrary to the former idea, the chromosomal regions consisting of satellites are now

References

[1]  P. M. Ferree and D. A. Barbash, “Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila,” PLoS Biology, vol. 7, no. 10, Article ID e1000234, 2009.
[2]  F. T. Hacch and J. A. Mazrimas, “Fractionation and characterization of satellite DNAs of the kangaroo rat (Dipodomys ordii),” Nucleic Acids Research, vol. 1, no. 4, pp. 559–576, 1974.
[3]  V. Wood, R. Gwilliam, M.-A. Rajandream et al., “The genome sequence of Schizosaccharomyces pombe,” Nature, vol. 415, no. 6874, pp. 871–880, 2002.
[4]  G. Bosco, P. Campbell, J. T. Leiva-Neto, and T. A. Markow, “Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species,” Genetics, vol. 177, no. 3, pp. 1277–1290, 2007.
[5]  O. Vafa, R. D. Shelby, and K. F. Sullivan, “CENP-A associated complex satellite DNA in the kinetochore of the Indian muntjac,” Chromosoma, vol. 108, no. 6, pp. 367–374, 1999.
[6]  S. Ono, “So much "junk" DNA in our genome,” Brookhaven Symposia in Biology, vol. 23, pp. 366–370, 1972.
[7]  L. E. Orgel and H. C. Crick, “Selfish DNA: the ultimate parasite,” Nature, vol. 284, no. 5757, pp. 604–607, 1980.
[8]  G. H. Karpen, M. H. Le, and H. Le, “Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis,” Science, vol. 273, no. 5271, pp. 118–122, 1996.
[9]  A. F. Dernburg, J. W. Sedat, and R. S. Hawley, “Direct evidence of a role for heterochromatin in meiotic chromosome segregation,” Cell, vol. 86, no. 1, pp. 135–146, 1996.
[10]  Y. Yamagishi, T. Sakuno, M. Shimura, and Y. Watanabe, “Heterochromatin links to centromeric protection by recruiting shugoshin,” Nature, vol. 455, no. 7210, pp. 251–255, 2008.
[11]  M. Gatti, S. Pimpinelli, and G. Santini, “Characterization of Drosophila chromatin. I. Staining and decondensation with Hoechst 33258 and quinacrine,” Chromosoma, vol. 57, no. 4, pp. 351–375, 1976.
[12]  F. T. Hatch, A. J. Bodner, J. A. Mazrimas, and D. H. Moore, “Satellite DNA and cytogenetic evolution; DNA quality, satellite DNA and karyotypic variation in kangaroo rats (Genus Dipodomys),” Chromosoma, vol. 58, no. 2, pp. 155–168, 1976.
[13]  A. R. Lohe and P. A. Roberts, “Evolution of satellite DNA sequences in Drosophila,” in Heterochromatin: Molecular and Structural Aspects, R. S. Verma, Ed., Cambridge University Press, Cambridge, UK, 1988.
[14]  A. Kamm, I. Galasso, T. Schmidt, and J. S. Heslop-Harrison, “Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species,” Plant Molecular Biology, vol. 27, no. 5, pp. 853–862, 1995.
[15]  A. V. Vershinin, E. G. Alkhimova, and J. S. Heslop-Harrison, “Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species,” Chromosome Research, vol. 4, no. 7, pp. 517–525, 1996.
[16]  R. Ross, T. Hankeln, and E. R. Schmidt, “Complex evolution of tandem-repetitive DNA in the Chironomus thummi species group,” Journal of Molecular Evolution, vol. 44, no. 3, pp. 321–327, 1997.
[17]  D. Ugarkovi?, S. Durajlija, and M. Plohl, “Evolution of Tribolium madens (Insecta, Coleoptera) satellite DNA through DNA inversion and insertion,” Journal of Molecular Evolution, vol. 42, no. 3, pp. 350–358, 1996.
[18]  C. H. Slamovits, J. A. Cook, E. P. Lessa, and M. S. Rossi, “Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach,” Molecular Biology and Evolution, vol. 18, no. 9, pp. 1708–1719, 2001.
[19]  T. Stratchan, D. Webb, and G. A. Dover, “Transition stages of molecular drive in multiple-copy DNA families in Drosophila,” EMBO Journal, vol. 4, pp. 1701–1708, 1985.
[20]  D. Kipling and P. E. Warburton, “Centromeres, CENP-B and Tigger too,” Trends in Genetics, vol. 13, no. 4, pp. 141–145, 1997.
[21]  H. S. Malik and S. Henikoff, “Adaptive evolution of Cid, a centromere-specific histone in Drosophila,” Genetics, vol. 157, no. 3, pp. 1293–1298, 2001.
[22]  N. Me?trovi?, P. Castagnone-Sereno, and M. Plohl, “Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes,” Molecular Biology and Evolution, vol. 23, no. 12, pp. 2316–2325, 2006.
[23]  B. Charlesworth, P. Sniegowski, and W. Stephan, “The evolutionary dynamics of repetitive DNA in eukaryotes,” Nature, vol. 371, no. 6494, pp. 215–220, 1994.
[24]  D. Ugarkovi? and M. Plohl, “Variation in satellite DNA profiles—causes and effects,” EMBO Journal, vol. 21, no. 22, pp. 5955–5959, 2002.
[25]  C. I. Wu, T. W. Lyttle, M. L. Wu, and G. F. Lin, “Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster,” Cell, vol. 54, no. 2, pp. 179–189, 1988.
[26]  R. Blattes, C. Monod, G. Susbielle et al., “Displacement of D1, HP1 and topoisomerase II from satellite heterochromatin by a specific polyamide,” EMBO Journal, vol. 25, no. 11, pp. 2397–2408, 2006.
[27]  J. H. Werren, “The paternal-sex-ratio chromosome of nasonia,” The American Naturalist, vol. 137, pp. 392–402, 1991.
[28]  D. G. Eickbush, T. H. Eickbush, and J. Werren, “Molecular characterization of repetitive DNA sequences from a B chromosome,” Chromosoma, vol. 101, no. 9, pp. 575–583, 1992.
[29]  J. J. Yunis and W. G. Yasmineh, “Heterochromatin, satellite DNA, and cell function,” Science, vol. 174, no. 4015, pp. 1200–1209, 1971.
[30]  J. L. Gerton and R. S. Hawley, “Homologous chromosome interactions in meiosis: diversity amidst conservation,” Nature Reviews Genetics, vol. 6, no. 6, pp. 477–487, 2005.
[31]  S. Gershenson, “Studies on the genetically inert region of the X chromosome of Drosophila: I. Behavior of an X chromosome deficient for a part of the inert region,” Journal of Genetics, vol. 28, pp. 297–312, 1933.
[32]  B. D. McKee and D. L. Lindsley, “Inseparability of X heterochromatic functions responsible for X: Y pairing, meiotic drive and male fertility in Drosophila melanogaster males,” Genetics, vol. 116, pp. 399–407, 1987.
[33]  B. D. McKee and G. H. Karpen, “Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis,” Cell, vol. 61, no. 1, pp. 61–72, 1990.
[34]  B. D. McKee, “Homologous pairing and chromosome dynamics in meiosis and mitosis,” Biochimica et Biophysica Acta, vol. 1677, no. 1–3, pp. 165–180, 2004.
[35]  R. S. Hawley, H. Irick, A. E. Zitron et al., “There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology,” Developmental Genetics, vol. 13, no. 6, pp. 440–467, 1993.
[36]  M. Yamamoto, “Cytologic studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic pairing,” Chromosoma, vol. 72, no. 3, pp. 293–328, 1979.
[37]  U. Tettenborn and A. Gropp, “Meiotic nondisjunction in mice and mouse hybrids,” Cytogenetics, vol. 9, no. 4, pp. 272–283, 1970.
[38]  Y. Matsuda, P. B. Moens, and V. M. Chapman, “Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus and Mus spretus),” Chromosoma, vol. 101, no. 8, pp. 483–492, 1992.
[39]  G. L. Stebbins, “Cytogenetic studies in Paeonia II. The cytology of the diploid species and hybrids,” Genetics, vol. 23, pp. 83–110, 1937.
[40]  H. Hollocher, K. Agopian, J. Waterbury, R. W. O'Neill, and A. Davis, “Characterization of defects in adult germline development and oogenesis of sterile and rescued female hybrids in crosses between Drosophila simulans and Drosophila melanogaster,” Molecular and Developmental Evolution, vol. 288, no. 3, pp. 205–218, 2000.
[41]  D. A. Barbash and M. Ashburner, “A novel system of fertility rescue in Drosophila hybrids reveals a link between hybrid lethality and female sterility,” Genetics, vol. 163, no. 1, pp. 217–226, 2003.
[42]  C. W. Metz, “Chromosome studies on the Diptera: II. The paired association of chromosomes in the Diptera and its significance,” Journal of Experimental Zoology, vol. 21, pp. 213–279, 1919.
[43]  S. Henikoff and L. Comai, “Trans-sensing effects: the ups-and downs of being together,” Cell, vol. 93, no. 3, pp. 329–332, 1998.
[44]  J. C. Fung, W. F. Marshall, A. Dernburg, D. A. Agard, and J. W. Sedat, “Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations,” Journal of Cell Biology, vol. 141, no. 1, pp. 5–20, 1998.
[45]  B. T. Sage and A. K. Csink, “Heterochromatic self-association, a determinant of nuclear organization, does not require sequence homology in Drosophila,” Genetics, vol. 165, no. 3, pp. 1183–1193, 2003.
[46]  R. G. Temin, “The independent distorting ability of the Enhancer of Segregation distortion, E(SD), in Drosophila melanogaster,” Genetics, vol. 128, no. 2, pp. 339–356, 1991.
[47]  K. Maeshima and U. K. Laemmli, “A Two-step scaffolding model for mitotic chromosome assembly,” Developmental Cell, vol. 4, no. 4, pp. 467–480, 2003.
[48]  J. W. Raff, R. Kellum, and B. Alberts, “The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle,” EMBO Journal, vol. 13, no. 24, pp. 5977–5983, 1994.
[49]  T. T?r?k, M. Gorjánácz, P. J. Bryant, and I. Kiss, “Prod is a novel DNA-binding protein that binds to the 1.686 g/cm3 10 bp satellite repeat of Drosophila melanogaster,” Nucleic Acids Research, vol. 28, no. 18, pp. 3551–3557, 2000.
[50]  M. Z. Radic, K. Lundgren, and B. A. Hamkalo, “Curvature of mouse satellite DNA and condensation of heterochromatin,” Cell, vol. 50, no. 7, pp. 1101–1108, 1987.
[51]  M. Plohl, N. Me?trovi?, B. Bruvo, and D. Ugarkovi?, “Similarity of structural features and evolution of satellite DNAs from Palorus subdepressus (Coleoptera) and related species,” Journal of Molecular Evolution, vol. 46, no. 2, pp. 234–239, 1998.
[52]  K. M. Bhat, G. Farkas, F. Karch, H. Gyurkovics, J. Gausz, and P. Schedl, “The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division,” Development, vol. 122, no. 4, pp. 1113–1124, 1996.
[53]  T. Nakayama, K. Nishioka, Y. X. Dong, T. Shimojima, and S. Hirose, “Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading,” Genes and Development, vol. 21, no. 5, pp. 552–561, 2007.
[54]  S. Henikoff, K. Ahmad, and H. S. Malik, “The centromere paradox: stable inheritance with rapidly evolving DNA,” Science, vol. 293, no. 5532, pp. 1098–1102, 2001.
[55]  C.-T. Ting, S. C. Tsaur, M.-L. Wu, and C.-I. Wu, “A rapidly evolving homeobox at the site of a hybrid sterility gene,” Science, vol. 282, no. 5393, pp. 1501–1504, 1998.
[56]  S. Sun, C. Ting, and C.-I. Wu, “The normal function of a speciation gene, Odysseus, and its hybrid sterility effect,” Science, vol. 305, no. 5680, pp. 81–83, 2004.
[57]  C.-T. Ting, S.-C. Tsaur, S. Sun, W. E. Browne, Y.-C. Chen, et al., “Gene duplication and speciation in Drosophila: evidence from the Odysseus locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12232–12235, 2004.
[58]  J. J. Bayes and H. S. Malik, “Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species,” Science, vol. 326, no. 5959, pp. 1538–1541, 2009.
[59]  J. C. Eissenberg and G. Reuter, “Chapter 1 Cellular Mechanism for Targeting Heterochromatin Formation in Drosophila,” International Review of Cell and Molecular Biology, vol. 273, pp. 1–47, 2009.
[60]  M. Lachner, D. O'Carroll, S. Rea, K. Mechtler, and T. Jenuwein, “Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins,” Nature, vol. 410, no. 6824, pp. 116–120, 2001.
[61]  A. H. Peters, J. E. Mermoud, D. O'Carroll et al., “Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin,” Nature Genetics, vol. 30, no. 1, pp. 77–80, 2002.
[62]  T. Cheutin, A. J. McNairn, T. Jenuwein, D. M. Gilbert, P. B. Singh, and T. Misteli, “Maintenance of stable heterochromatin domains by dynamic HP1 binding,” Science, vol. 299, no. 5607, pp. 721–725, 2003.
[63]  P. J. Verschure, I. van der Kraan, W. de Leeuw et al., “In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation,” Molecular and Cellular Biology, vol. 25, no. 11, pp. 4552–4564, 2005.
[64]  G. Schotta, A. Ebert, V. Krauss et al., “Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing,” EMBO Journal, vol. 21, no. 5, pp. 1121–1131, 2002.
[65]  L. Fanti and S. Pimpinelli, “HP1: a functionally multifaceted protein,” Current Opinion in Genetics and Development, vol. 18, no. 2, pp. 169–174, 2008.
[66]  K. Sawamura, M.-T. Yamamoto, and T. K. Watanabe, “Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of Drosophila melanogaster,” Genetics, vol. 133, no. 2, pp. 307–313, 1993.
[67]  K. Sawamura and M.-T. Yamamoto, “Characterization of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster by using minichromosomes,” Heredity, vol. 79, no. 1, pp. 97–103, 1997.
[68]  K. Sawamura and M.-T. Yamamoto, “Cytogenetical localization of Zygotic hybrid rescue (Zhr), a Drosophila melanogaster gene that rescues interspecific hybrids from embryonic lethality,” Molecular and General Genetics, vol. 239, no. 3, pp. 441–449, 1993.
[69]  K. Sawamura, A. Fujita, R. Yokoyama et al., “Molecular and genetic dissection of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster,” Japanese Journal of Genetics, vol. 70, no. 2, pp. 223–232, 1995.
[70]  D. A. Barbash, D. F. Siino, A. M. Tarone, and J. Roote, “A rapidly evolving MYB-related protein causes species isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5302–5307, 2003.
[71]  D. C. Presgraves, L. Balagopalan, S. M. Abmayr, and H. A. Orr, “Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila,” Nature, vol. 423, no. 6941, pp. 715–719, 2003.
[72]  N. J. Brideau, H. A. Flores, J. Wang, S. Maheshwari, X. Wang, and D. A. Barbash, “Two Dobzhansky-Muller Genes interact to cause hybrid lethality in Drosophila,” Science, vol. 314, no. 5803, pp. 1292–1295, 2006.
[73]  J. C. Wang, “Cellular roles of DNA topoisomerases: a molecular perspective,” Nature Reviews Molecular Cell Biology, vol. 3, no. 6, pp. 430–440, 2002.
[74]  P. A. Coelho, J. Queiroz-Machado, and C. E. Sunkel, “Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis,” Journal of Cell Science, vol. 116, no. 23, pp. 4763–4776, 2003.
[75]  V. E. Foe, G. M. Odell, and B. A. Edgar, “Mitosis and morphogenesis in the Drosophila embryo: point and counterpoint,” in The Development of Drosophila Melanogaster, M. Bate and A. Martinez Arias, Eds., pp. 149–300, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1993.
[76]  S. Pimpinelli, W. Sullivan, M. Prout, and L. Sandler, “On biological functions mapping to the heterochromatin of Drosophila melanogaster,” Genetics, vol. 109, no. 4, pp. 701–724, 1985.
[77]  R. Kellum, J. W. Raff, and B. M. Alberts, “Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos,” Journal of Cell Science, vol. 108, no. 4, pp. 1407–1418, 1995.
[78]  O. Mihola, Z. Trachtulec, C. Vlcek, J. C. Schimenti, and J. Forejt, “A mouse speciation gene encodes a meiotic histone H3 methyltransferase,” Science, vol. 323, no. 5912, pp. 373–375, 2009.
[79]  T. Rudolph, M. Yonezawa, S. Lein et al., “Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3,” Molecular Cell, vol. 26, no. 1, pp. 103–115, 2007.
[80]  D. Vermaak, S. Henikoff, and H. S. Malik, “Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila,” PLoS Genetics, vol. 1, no. 1, pp. 96–108, 2005.
[81]  D. Moazed, “Small RNAs in transcriptional gene silencing and genome defence,” Nature, vol. 457, no. 7228, pp. 413–420, 2009.
[82]  M. Pal-Bhadra, B. A. Leibovitch, S. G. Gandhi et al., “Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery,” Science, vol. 303, no. 5658, pp. 669–672, 2004.
[83]  P. Fransz, R. ten Hoopen, and F. Tessadori, “Composition and formation of heterochromatin in Arabidopsis thaliana,” Chromosome Research, vol. 14, no. 1, pp. 71–82, 2006.
[84]  L. Usakin, J. Abad, V. V. Vagin, B. de Pablos, A. Villasante, and V. A. Gvozdev, “Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries,” Genetics, vol. 176, no. 2, pp. 1343–1349, 2007.
[85]  L. Salvany, S. Aldaz, E. Corsetti, and N. Azpiazu, “A new role for hth in the early pre-blastodermic divisions in Drosophila,” Cell Cycle, vol. 8, no. 17, pp. 2748–2755, 2009.
[86]  P. M. Ferree and D. A. Barbash, “Distorted sex ratios: a window into RNA-mediated silencing,” PLoS Biology, vol. 5, no. 11, article e303, 2007.
[87]  D. U. Menon and V. H. Meller, “Germ line imprinting in Drosophila: epigenetics in search of function,” Fly, vol. 4, no. 1, pp. 48–52, 2010.
[88]  N. I. Noujdin, “The regularities of the heterochromatin influence on mosaicism. The hypothesis of the structural homozygosity and heterozygosity,” Journal of General Biology, vol. 5, pp. 357–388, 1944.
[89]  V. Lloyd, “Parental imprinting in Drosophila,” Genetica, vol. 109, no. 1-2, pp. 35–44, 2000.
[90]  K. G. Golic, M. M. Golic, and S. Pimpinelli, “Imprinted control of gene activity in Drosophila,” Current Biology, vol. 8, no. 23, pp. 1273–1276, 1998.
[91]  K. A. Maggert and K. G. Golic, “The Y chromosome of Drosophila melanogaster exhibits chromosome-wide imprinting,” Genetics, vol. 162, no. 3, pp. 1245–1258, 2002.
[92]  C. Merrill, L. Bayraktaroglu, A. Kusano, and B. Ganetzky, “Truncated RanGAP encoded by the segregation distorter locus of Drosophila,” Science, vol. 283, no. 5408, pp. 1742–1745, 1999.
[93]  A. Kusano, C. Staber, and B. Ganetzky, “Nuclear mislocalization of enzymatically active RanGAP causes segregation distortion in Drosophila,” Developmental Cell, vol. 1, no. 3, pp. 351–361, 2001.
[94]  Y. Tao, L. Araripe, S. B. Kingan, Y. Ke, H. Xiao, and D. L. Hartl, “A sex-ratio meiotic drive system in Drosophila simulans II: an X-linked distorter,” PLoS biology, vol. 5, no. 11, article e293, 2007.
[95]  N. Phadnis and H. A. Orr, “A single gene causes both male sterility and segregation distortion in Drosophila hybrids,” Science, vol. 323, no. 5912, pp. 376–379, 2009.
[96]  E. Novitski and L. Sandler, “Are all products of spermatogenesis regularly functional?” Proceedings of the National Academy of Sciences of the United States of America, vol. 43, pp. 318-324–318-324, 1957.
[97]  M. E. Zwick, J. L. Salstrom, and C. H. Langley, “Genetic variation in rates of nondisjunction: association of two naturally occuring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster,” Genetics, vol. 152, no. 4, pp. 1605–1614, 1999.
[98]  H. S. Malik, “The centromere-drive hypothesis: a simple basis for centromere complexity,” Progress in Molecular and Subcellular Biology, vol. 48, pp. 33–52, 2009.
[99]  S. I. Agulnik, A. I. Agulnik, and A. O. Ruvinsky, “Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1,” Genetical Research, vol. 55, no. 2, pp. 97–100, 1990.
[100]  E. S. Buckler, T. L. Phelps-Durr, C. S. Buckler, R. K. Dawe, J. F. Doebley, and T. P. Holtsford, “Meiotic drive of chromosomal knobs reshaped the maize genome,” Genetics, vol. 153, no. 1, pp. 415–426, 1999.
[101]  J. Jaenike, “Sex chromosome meiotic drive,” Annual Review of Ecology and Systematics, vol. 32, pp. 25–49, 2001.
[102]  L. Fishman and J. H. Willis, “A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids,” Genetics, vol. 169, no. 1, pp. 347–353, 2005.
[103]  L. Fishman and A. Saunders, “Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers,” Science, vol. 322, no. 5907, pp. 1559–1562, 2008.
[104]  H. S. Malik and J. J. Bayes, “Genetic conflicts during meiosis and the evolutionary origins of centromere complexity,” Biochemical Society Transactions, vol. 34, no. 4, pp. 569–573, 2006.
[105]  H. A. Orr, “Dobzhansky, Bateson, and the genetics of speciation,” Genetics, vol. 144, no. 4, pp. 1331–1335, 1996.
[106]  N. A. Johnson, “Hybrid incompatibility genes: remnants of a genomic battlefield?” Trends in Genetics, vol. 26, no. 7, pp. 317–325, 2010.
[107]  D. A. Barbash and J. G. Lorigan, “Lethality in Drosophila melanogaster/Drosophila simulans species hybrids is not associated with substantial transcriptional misregulation,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 308, no. 1, pp. 74–84, 2007.
[108]  D. Ortíz-Barrientos, B. A. Counterman, and M. A. F. Noor, “Gene expression divergence and the origin of hybrid dysfunctions,” Genetica, vol. 129, no. 1, pp. 71–78, 2007.
[109]  H. A. Orr, “The population genetics of speciation: the evolution of hybrid incompatibilities,” Genetics, vol. 139, no. 4, pp. 1805–1813, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413