全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aphids: A Model for Polyphenism and Epigenetics

DOI: 10.1155/2012/431531

Full-Text   Cite this paper   Add to My Lib

Abstract:

Environmental conditions can alter the form, function, and behavior of organisms over short and long timescales, and even over generations. Aphid females respond to specific environmental cues by transmitting signals that have the effect of altering the development of their offspring. These epigenetic phenomena have positioned aphids as a model for the study of phenotypic plasticity. The molecular basis for this epigenetic inheritance in aphids and how this type of inheritance system could have evolved are still unanswered questions. With the availability of the pea aphid genome sequence, new genomics technologies, and ongoing genomics projects in aphids, these questions can now be addressed. Here, we review epigenetic phenomena in aphids and recent progress toward elucidating the molecular basis of epigenetics in aphids. The discovery of a functional DNA methylation system, functional small RNA system, and expanded set of chromatin modifying genes provides a platform for analyzing these pathways in the context of aphid plasticity. With these tools and further research, aphids are an emerging model system for studying the molecular epigenetics of polyphenisms. 1. Introduction While the genome has been portrayed as a “blueprint” instructing the development of an adult organism, the articulation of genotype into phenotype is a more complex phenomenon. Context-dependent development and environment-dependent phenotypic variation have been observed for decades [1]. Like the changes in gene expression that intrinsically occur in development, environment can affect gene expression and alter developmental trajectories [2]. If these developmental responses to the environment, and plasticity itself, can increase fitness and are heritable, then morphology, physiology, behavior, or life history strategies can evolve elements of adaptive phenotypic plasticity [1, 3]. This can result in the production of continuous or discrete phenotypic variation (polyphenism). The possibility for nongenetic heritable effects of environment on development raises doubts about the “blueprint” view of the genome [4]. Waddington originally defined “epigenetics” as the study of phenomena that act to produce phenotype from genotype all within in a framework of evolutionary biology [5–7]. Waddington’s view of epigenetics now largely encompasses the fields of developmental biology and evolutionary developmental biology, which describe, in part, how patterns of gene expression change during ontogeny and through evolution [8]. The modern field of epigenetics examines how patterns of gene

References

[1]  T. J. DeWitt, S. M. Scheiner, and Ebrary Inc., Phenotypic Plasticity Functional and Conceptual Approaches, Oxford University Press, New York, NY, USA, 2004.
[2]  S. F. Gilbert, “Mechanisms for the environmental regulation of gene expression,” Birth Defects Research. Part C, vol. 72, no. 4, pp. 291–299, 2004.
[3]  M. J. West-Eberhard, Developmental Plasticity and Evolution, Oxford University Press, New York, NY, USA, 2003.
[4]  M. Pigliucci, “Genotype-phenotype mapping and the end of the “genes as blueprint” metaphor,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1540, pp. 557–566, 2010.
[5]  C. H. Waddington, “The epigenotype,” Endeavour, vol. 1, pp. 18–20, 1942.
[6]  H. A. Jamniczky, J. C. Boughner, C. Rolian et al., “Rediscovering Waddington in the post-genomic age: operationalising Waddington's epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation,” BioEssays, vol. 32, no. 7, pp. 553–558, 2010.
[7]  C. H. Waddington, The Strategy of the Genes; A Discussion of Some Aspects of Theoretical Biology, Allen & Unwin, London, UK, 1957.
[8]  S. B. Carroll, J. K. Grenier, and S. D. Weatherbee, From DNA to Diversity : Molecular Genetics and the Evolution of Animal Design, Blackwell, Malden, Mass, USA, 2001.
[9]  A. V. Probst, E. Dunleavy, and G. Almouzni, “Epigenetic inheritance during the cell cycle,” Nature Reviews Molecular Cell Biology, vol. 10, no. 3, pp. 192–206, 2009.
[10]  V. A. Blomen and J. Boonstra, “Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle,” Cellular and Molecular Life Sciences, vol. 68, pp. 27–44, 2010.
[11]  V. Bollati and A. Baccarelli, “Environmental epigenetics,” Heredity, vol. 105, no. 1, pp. 105–112, 2010.
[12]  G. Lushai, H. D. Loxdale, C. P. Brookes, N. Von Mende, R. Harrington, and J. Hardie, “Genotypic variation among different phenotypes within aphid clones,” Proceedings of the Royal Society B, vol. 264, no. 1382, pp. 725–730, 1997.
[13]  T. Miura, C. Braendle, A. Shingleton, G. Sisk, S. Kambhampati, and D. L. Stern, “A Comparison of parthenogenetic and sexual embryogenesis of the pea Aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea),” Journal of Experimental Zoology Part B, vol. 295, no. 1, pp. 59–81, 2003.
[14]  A. W. Shingleton, G. C. Sisk, and D. L. Stern, “Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development,” BMC Developmental Biology, vol. 3, p. 7, 2003.
[15]  P. D. Gluckman, M. A. Hanson, P. Bateson et al., “Towards a new developmental synthesis: adaptive developmental plasticity and human disease,” The Lancet, vol. 373, no. 9675, pp. 1654–1657, 2009.
[16]  C. Braendle, G. K. Davis, J. A. Brisson, and D. L. Stern, “Wing dimorphism in aphids,” Heredity, vol. 97, no. 3, pp. 192–199, 2006.
[17]  A. D. Lees, “The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the r?le of crowding,” Journal of Insect Physiology, vol. 13, no. 2, pp. 289–318, 1967.
[18]  C. B. Müller, I. S. Williams, and J. Hardie, “The role of nutrition, crowding and interspecific interactions in the development of winged aphids,” Ecological Entomology, vol. 26, no. 3, pp. 330–340, 2001.
[19]  P. A. MacKay and W. G. Wellington, “Maternal age as a source of variation in the ability of an aphid to produce dispersing forms,” Researches on Population Ecology, vol. 18, no. 1, pp. 195–209, 1976.
[20]  E. B. Mondor, J. A. Rosenheim, and J. F. Addicott, “Predator-induced transgenerational phenotypic plasticity in the cotton aphid,” Oecologia, vol. 142, no. 1, pp. 104–108, 2005.
[21]  A. F. G. Dixon and B. K. Agarwala, “Ladybird-induced life-history changes in aphids,” Proceedings of the Royal Society B, vol. 266, no. 1428, pp. 1549–1553, 1999.
[22]  G. Kunert and W. W. Weisser, “The interplay between density- and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism,” Oecologia, vol. 135, no. 2, pp. 304–312, 2003.
[23]  G. Kunert, S. Otto, U. S. R. R?se, J. Gershenzon, and W. W. Weisser, “Alarm pheromone mediates production of winged dispersal morphs in aphids,” Ecology Letters, vol. 8, no. 6, pp. 596–603, 2005.
[24]  O. R. W. Sutherland, “The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum,” Journal of Insect Physiology, vol. 15, no. 8, pp. 1385–1410, 1969.
[25]  A. Ishikawa and T. Miura, “Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid,” Evolution and Development, vol. 11, no. 6, pp. 680–688, 2009.
[26]  J. A. Brisson, “Aphid wing dimorphisms: linking environmental and genetic control of trait variation,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1540, pp. 605–616, 2010.
[27]  S. Marcovitch, “The migration of the Aphididae and the appearance of the sexual forms as affected by the relative length of daily light exposure,” Journal of Agricultural Research, vol. 27, pp. 513–522, 1924.
[28]  G. Le Trionnaire, J. Hardiet, S. Jaubert-Possamai, J. C. Simon, and D. Tagu, “Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects,” Biology of the Cell, vol. 100, no. 8, pp. 441–451, 2008.
[29]  A. D. Lees, “The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton-III. Further properties of the maternal switching mechanism in apterous aphids,” Journal of Insect Physiology, vol. 9, no. 2, pp. 153–164, 1963.
[30]  A. D. Lees, “The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton-I. The influence of these factors on apterous virginoparae and their progeny,” Journal of Insect Physiology, vol. 3, no. 2, pp. 92–117, 1959.
[31]  R. L. Blackman, “Reproduction, cytogenetics and development,” in In Aphids: Their Biology, Natural Enemies and Control, A. Minks and K. P. Harrewijn, Eds., pp. 163–195, Elsevier, Amsterdam, The Netherlands, 1987.
[32]  J. Hardie and M. Vaz Nunes, “Aphid photoperiodic clocks,” Journal of Insect Physiology, vol. 47, no. 8, pp. 821–832, 2001.
[33]  F. Halkett, R. Harrington, M. Hullé et al., “Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive "coin-flipping" plasticity,” The American Naturalist, vol. 163, no. 6, pp. E112–125, 2004.
[34]  C. A. Dedryver, J. F. Le Gallic, J. P. Gauthier, and J. C. Simon, “Life cycle of the cereal aphid Sitobion avenae F.: polymorphism and comparison of life history traits associated with sexuality,” Ecological Entomology, vol. 23, no. 2, pp. 123–132, 1998.
[35]  J. Büning, “Morphology, ultrastructure, and germ cell cluster formation in ovarioles of aphids,” Journal of Morphology, vol. 186, no. 2, pp. 209–221, 1985.
[36]  H. E. Ewing, “The factors of inheritance and parentage as affecting the ratio of alate to apterous individuals in aphids,” The American Naturalist, vol. 59, pp. 311–326, 1925.
[37]  O. R. W. Sutherland, “An intrinsic factor influencing alate production by two strains of the pea aphid, Acyrthosiphon pisum,” Journal of Insect Physiology, vol. 16, no. 7, pp. 1349–1354, 1970.
[38]  T. E. Mittler, S. G. Nassar, and G. B. Staal, “Wing development and parthenogenesis induced in progenies of kinoprene-treated gynoparae of Aphis fabae and Myzus persicae,” Journal of Insect Physiology, vol. 22, no. 12, pp. 1717–1725, 1976.
[39]  T. E. Mittler, J. Eisenbach, J. B. Searle, M. Matsuka, and S. G. Nassar, “Inhibition by kinoprene of photoperiod-induced male production by apterous and alate viviparae of the aphid Myzus persicae,” Journal of Insect Physiology, vol. 25, no. 3, pp. 219–226, 1979.
[40]  A. D. Lees, “The location of the photoperiodic receptors in the aphid Megoura viciae buckton,” The Journal of Experimental Biology, vol. 41, pp. 119–133, 1964.
[41]  C. G. Steel and A. D. Lees, “The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae,” Journal of Experimental Biology, vol. 67, pp. 117–135, 1977.
[42]  S. Richards, R. A. Gibbs, N. M. Gerardo et al., “Genome sequence of the pea aphid Acyrthosiphon pisum,” PLoS Biology, vol. 8, no. 2, Article ID e1000313, 2010.
[43]  J. K. Colbourne, M. E. Pfrender, D. Gilbert et al., “The ecoresponsive genome of Daphnia pulex,” Science, vol. 331, no. 6017, pp. 555–561, 2011.
[44]  G. P. Bernet, A. Munoz-Pomer, L. Dominguez-Escriba, et al., “GyDB mobilomics: LTR retroelements and integrase-related transposons of the pea aphid Acyrthosiphonpisum genome,” Mobile Genetic Elements, vol. 1, pp. 97–102, 2011.
[45]  B. Sabater-Mu?oz, F. Legeai, C. Rispe et al., “Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera),” Genome Biology, vol. 7, no. 3, article no. R21, 2006.
[46]  D. Tagu, N. Prunier-Leterme, F. Legeai et al., “Annotated expressed sequence tags for studies of the regulation of reproductive modes in aphids,” Insect Biochemistry and Molecular Biology, vol. 34, no. 8, pp. 809–822, 2004.
[47]  W. B. Hunter, P. M. Dang, M. G. Bausher et al., “Aphid biology: expressed genes from alate Toxoptera citricida, the brown citrus aphid.,” Journal of Insect Science, vol. 3, p. 23, 2003.
[48]  S. Shigenobu, S. Richards, A. G. Cree et al., “A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum,” Insect Molecular Biology, vol. 19, no. 2, supplement 2, pp. 23–31, 2010.
[49]  A. Nakabachi, S. Shigenobu, N. Sakazume et al., “Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5477–5482, 2005.
[50]  J. S. Ramsey, A. C. C. Wilson, M. de Vos et al., “Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design,” BMC Genomics, vol. 8, article no. 423, 2007.
[51]  T. Cortés, D. Tagu, J. C. Simon, A. Moya, and D. Martínez-Torres, “Sex versus parthenogenesis: a transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae),” Gene, vol. 408, no. 1-2, pp. 146–156, 2008.
[52]  B. Altincicek, J. Gross, and A. Vilcinskas, “Wounding-mediated gene expression and accelerated viviparous reproduction of the pea aphid Acyrthosiphon pisum,” Insect Molecular Biology, vol. 17, no. 6, pp. 711–716, 2008.
[53]  J. C. Carolan, C. I. J. Fitzroy, P. D. Ashton, A. E. Douglas, and T. L. Wilkinsonl, “The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry,” Proteomics, vol. 9, no. 9, pp. 2457–2467, 2009.
[54]  M. Ollivier, F. Legeai, and C. Rispe, “Comparative analysis of the Acyrthosiphon pisum genome and expressed sequence tag-based gene sets from other aphid species,” Insect Molecular Biology, vol. 19, no. 2, supplement 2, pp. 33–45, 2010.
[55]  S. Jaubert-Possamai, G. Le Trionnaire, J. Bonhomme, G. K. Christophides, C. Rispe, and D. Tagu, “Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum,” BMC Biotechnology, vol. 7, article no. 63, 2007.
[56]  A. J. Shakesby, I. S. Wallace, H. V. Isaacs, J. Pritchard, D. M. Roberts, and A. E. Douglas, “A water-specific aquaporin involved in aphid osmoregulation,” Insect Biochemistry and Molecular Biology, vol. 39, no. 1, pp. 1–10, 2009.
[57]  N. S. Mutti, J. Louis, L. K. Pappan et al., “A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 9965–9969, 2008.
[58]  N. S. Mutti, Y. Park, J. C. Reese, and G. R. Reeck, “RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum,” Journal of Insect Science, vol. 6, pp. 1–7, 2006.
[59]  S. Whyard, A. D. Singh, and S. Wong, “Ingested double-stranded RNAs can act as species-specific insecticides,” Insect Biochemistry and Molecular Biology, vol. 39, no. 11, pp. 824–832, 2009.
[60]  W. Xu and Z. Han, “Cloning and phylogenetic analysis of sid-1-like genes from aphids,” Journal of Insect Science, vol. 8, article no. 30, pp. 1–6, 2008.
[61]  S. D. Rider, D. G. Srinivasan, and R. S. Hilgarth, “Chromatin-remodelling proteins of the pea aphid, Acyrthosiphon pisum (Harris),” Insect Molecular Biology, vol. 19, no. 2, pp. 201–214, 2010.
[62]  J. A. Brisson, A. Ishikawa, and T. Miura, “Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs,” Insect Molecular Biology, vol. 19, no. 2, supplement, pp. 63–73, 2010.
[63]  S. Ramos, A. Moya, and D. Martínez-Torres, “Identification of a gene overexpressed in aphids reared under short photoperiod,” Insect Biochemistry and Molecular Biology, vol. 33, no. 3, pp. 289–298, 2003.
[64]  D. R.G. Price, R. P. Duncan, S. Shigenobu, and A. C.C. Wilson, “Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface,” Molecular Biology and Evolution, vol. 28, no. 11, pp. 3113–3126, 2011.
[65]  G. Le Trionnaire, F. Francis, S. Jaubert-Possamai et al., “Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid,” BMC Genomics, vol. 10, article no. 1471, p. 456, 2009.
[66]  H. F. Nijhout, “Development and evolution of adaptive polyphenisms,” Evolution and Development, vol. 5, no. 1, pp. 9–18, 2003.
[67]  L. M. Field, F. Lyko, M. Mandrioli, and G. Prantera, “DNA methylation in insects,” Insect Molecular Biology, vol. 13, no. 2, pp. 109–115, 2004.
[68]  S. Foret, R. Kucharski, Y. Pittelkow, G. A. Lockett, and R. Maleszka, “Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes,” BMC Genomics, vol. 10, article no. 1471, p. 472, 2009.
[69]  J. A. Law and S. E. Jacobsen, “Establishing, maintaining and modifying DNA methylation patterns in plants and animals,” Nature Reviews Genetics, vol. 11, no. 3, pp. 204–220, 2010.
[70]  A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16, no. 1, pp. 6–21, 2002.
[71]  A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science, vol. 286, no. 5439, pp. 481–486, 1999.
[72]  G. P. Delcuve, M. Rastegar, and J. R. Davie, “Epigenetic control,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 243–250, 2009.
[73]  L. M. Field, R. L. Blackman, C. Tyler-Smith, and A. L. Devonshire, “Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer),” Biochemical Journal, vol. 339, no. 3, pp. 737–742, 1999.
[74]  C. A. Hick, L. M. Field, and A. L. Devonshire, “Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae,” Insect Biochemistry and Molecular Biology, vol. 26, no. 1, pp. 41–47, 1996.
[75]  L. M. Field, S. E. Crick, and A. L. Devonshire, “Polymerase chain reaction-based identification of insecticide resistance genes and DNA methylation in the aphid Myzus persicae (Sulzer),” Insect Molecular Biology, vol. 5, no. 3, pp. 197–202, 1996.
[76]  L. M. Field, “Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer),” Biochemical Journal, vol. 349, no. 3, pp. 863–868, 2000.
[77]  M. Mandrioli and F. Borsatti, “Analysis of heterochromatic epigenetic markers in the holocentric chromosomes of the aphid Acyrthosiphon pisum,” Chromosome Research, vol. 15, no. 8, pp. 1015–1022, 2007.
[78]  M. G. Goll and T. H. Bestor, “Eukaryotic cytosine methyltransferases,” Annual Review of Biochemistry, vol. 74, pp. 481–514, 2005.
[79]  M. G. Goll, F. Kirpekar, K. A. Maggert et al., “Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2,” Science, vol. 311, no. 5759, pp. 395–398, 2006.
[80]  M. Schaefer and F. Lyko, “Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation,” Nature Genetics, vol. 42, no. 11, pp. 920–921, 2010.
[81]  P. A. Jones and G. Liang, “Rethinking how DNA methylation patterns are maintained,” Nature Reviews Genetics, vol. 10, no. 11, pp. 805–811, 2009.
[82]  F. Lyko and R. Maleszka, “Insects as innovative models for functional studies of DNA methylation,” Trends in Genetics, vol. 27, no. 4, pp. 127–131, 2011.
[83]  Y. Wang, M. Jorda, P. L. Jones et al., “Functional CpG methylation system in a social insect,” Science, vol. 314, no. 5799, pp. 645–647, 2006.
[84]  R. Maleszka, “Epigenetic integration of environmental and genomic signals in honey bees. The critical interplay of nutritional, brain and reproductive networks,” Epigenetics, vol. 3, no. 4, pp. 188–192, 2008.
[85]  T. K. Walsh, J. A. Brisson, H. M. Robertson et al., “A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum,” Insect Molecular Biology, vol. 19, no. 2, supplement 2, pp. 215–228, 2010.
[86]  M. Unoki, T. Nishidate, and Y. Nakamura, “ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain,” Oncogene, vol. 23, no. 46, pp. 7601–7610, 2004.
[87]  M. M. Suzuki, A. R. W. Kerr, D. de Sousa, and A. Bird, “CpG methylation is targeted to transcription units in an invertebrate genome,” Genome Research, vol. 17, no. 5, pp. 625–631, 2007.
[88]  N. Elango, B. G. Hunt, M. A. D. Goodisman, and S. V. Yi, “DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11206–11211, 2009.
[89]  J. A. Brisson, G. K. Davis, and D. L. Stern, “Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum),” Evolution and Development, vol. 9, no. 4, pp. 338–346, 2007.
[90]  B. G. Hunt, J. A. Brisson, S. V. Yi, and M. A. D. Goodisman, “Functional conservation of DNA methylation in the pea aphid and the honeybee,” Genome Biology and Evolution, vol. 2, no. 1, pp. 719–728, 2010.
[91]  H. Xiang, J. Zhu, Q. Chen et al., “Single base-resolution methylome of the silkworm reveals a sparse epigenomic map,” Nature Biotechnology, vol. 28, no. 7, pp. 516–520, 2010.
[92]  R. Kucharski, J. Maleszka, S. Foret, and R. Maleszka, “Nutritional control of reproductive status in honeybees via DNA methylation,” Science, vol. 319, no. 5871, pp. 1827–1830, 2008.
[93]  R. Lister, M. Pelizzola, R. H. Dowen et al., “Human DNA methylomes at base resolution show widespread epigenomic differences,” Nature, vol. 462, no. 7271, pp. 315–322, 2009.
[94]  R. Lister, R. C. O'Malley, J. Tonti-Filippini et al., “Highly integrated single-base resolution maps of the epigenome in Arabidopsis,” Cell, vol. 133, no. 3, pp. 523–536, 2008.
[95]  T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007.
[96]  L. A. Banaszynski, C. D. Allis, and P. W. Lewis, “Histone variants in metazoan development,” Developmental Cell, vol. 19, no. 5, pp. 662–674, 2010.
[97]  L. Ho and G. R. Crabtree, “Chromatin remodelling during development,” Nature, vol. 463, no. 7280, pp. 474–484, 2010.
[98]  B. van Steensel, “Chromatin: constructing the big picture,” EMBO Journal, vol. 30, no. 10, pp. 1885–1895, 2011.
[99]  M. V. Iorio, C. Piovan, and C. M. Croce, “Interplay between microRNAs and the epigenetic machinery: an intricate network,” Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, vol. 1799, no. 10-12, pp. 694–701, 2010.
[100]  T. Vaissière, C. Sawan, and Z. Herceg, “Epigenetic interplay between histone modifications and DNA methylation in gene silencing,” Mutation Research, vol. 659, no. 1-2, pp. 40–48, 2008.
[101]  R. Margueron and D. Reinberg, “Chromatin structure and the inheritance of epigenetic information,” Nature Reviews Genetics, vol. 11, no. 4, pp. 285–296, 2010.
[102]  G. J. Filion, J. G. van Bemmel, U. Braunschweig et al., “Systematic protein location mapping reveals five principal chromatin types in Drosophila cells,” Cell, vol. 143, no. 2, pp. 212–224, 2010.
[103]  V. Krauss, A. Fassl, P. Fiebig, I. Patties, and H. Sass, “The evolution of the histone methyltransferase gene Su(var)3-9 in metazoans includes a fusion with and a re-fission from a functionally unrelated gene,” BMC Evolutionary Biology, vol. 6, article no. 18, 2006.
[104]  M. Mandrioli, P. Azzoni, G. Lombardo, and G. C. Manicardi, “Composition and epigenetic markers of heterochromatin in the aphid Aphis nerii (Hemiptera: Aphididae),” Cytogenetic and Genome Research, vol. 133, no. 1, pp. 67–77, 2011.
[105]  V. W. Zhou, A. Goren, and B. E. Bernstein, “Charting histone modifications and the functional organization of mammalian genomes,” Nature Reviews Genetics, vol. 12, no. 1, pp. 7–18, 2011.
[106]  T. A. Farazi, S. A. Juranek, and T. Tuschl, “The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members,” Development, vol. 135, no. 7, pp. 1201–1214, 2008.
[107]  C. Klattenhoff and W. Theurkauf, “Biogenesis and germline functions of piRNAs,” Development, vol. 135, no. 1, pp. 3–9, 2008.
[108]  B. Czech, C. D. Malone, R. Zhou et al., “An endogenous small interfering RNA pathway in Drosophila,” Nature, vol. 453, no. 7196, pp. 798–802, 2008.
[109]  M. Ghildiyal and P. D. Zamore, “Small silencing RNAs: an expanding universe,” Nature Reviews Genetics, vol. 10, no. 2, pp. 94–108, 2009.
[110]  R. Zhou, I. Hotta, A. M. Denli, P. Hong, N. Perrimon, and G. J. Hannon, “Comparative analysis of argonaute-dependent small RNA pathways in Drosophila,” Molecular Cell, vol. 32, no. 4, pp. 592–599, 2008.
[111]  N. C. Lau, “Small RNAs in the animal gonad: guarding genomes and guiding development,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 8, pp. 1334–1347, 2010.
[112]  A. Pauli, J. L. Rinn, and A. F. Schier, “Non-coding RNAs as regulators of embryogenesis,” Nature Reviews Genetics, vol. 12, no. 2, pp. 136–149, 2011.
[113]  M. Inui, G. Martello, and S. Piccolo, “MicroRNA control of signal transduction,” Nature Reviews Molecular Cell Biology, vol. 11, no. 4, pp. 252–263, 2010.
[114]  Y. Tomari and P. D. Zamore, “MicroRNA biogenesis: drosha can't cut it without a partner,” Current Biology, vol. 15, no. 2, pp. R61–R64, 2005.
[115]  R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003.
[116]  M. T. Bohnsack, K. Czaplinski, and D. G?rlich, “Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs,” RNA, vol. 10, no. 2, pp. 185–191, 2004.
[117]  E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear Export of MicroRNA Precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004.
[118]  K. Saito, A. Ishizuka, H. Siomi, and M. C. Siomi, “Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells,” PLoS Biology, vol. 3, no. 7, Article ID e235, pp. 1202–1212, 2005.
[119]  F. Jiang, X. Ye, X. Liu, L. Fincher, D. McKearin, and Q. Liu, “Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila,” Genes and Development, vol. 19, no. 14, pp. 1674–1679, 2005.
[120]  K. Forstemann, Y. Tomari, T. Du et al., “Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein,” PLoS Biology, vol. 3, no. 7, Article ID e236, pp. 1187–1201, 2005.
[121]  G. Hutvagner and M. J. Simard, “Argonaute proteins: key players in RNA silencing,” Nature Reviews Molecular Cell Biology, vol. 9, no. 1, pp. 22–32, 2008.
[122]  K. Okamura, A. Ishizuka, H. Siomi, and M. C. Siomi, “Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways,” Genes and Development, vol. 18, no. 14, pp. 1655–1666, 2004.
[123]  Y. Tomari, T. Du, and P. D. Zamore, “Sorting of Drosophila Small Silencing RNAs,” Cell, vol. 130, no. 2, pp. 299–308, 2007.
[124]  K. Forstemann, M. D. Horwich, L. Wee, Y. Tomari, and P. D. Zamore, “Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1,” Cell, vol. 130, no. 2, pp. 287–297, 2007.
[125]  A. A. Aravin, N. M. Naumova, A. V. Tulin, V. V. Vagin, Y. M. Rozovsky, and V. A. Gvozdev, “Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline,” Current Biology, vol. 11, no. 13, pp. 1017–1027, 2001.
[126]  V. V. Vagin, A. Sigova, C. Li, H. Seitz, V. Gvozdev, and P. D. Zamore, “A distinct small RNA pathway silences selfish genetic elements in the germline,” Science, vol. 313, no. 5785, pp. 320–324, 2006.
[127]  C. D. Malone and G. J. Hannon, “Small RNAs as guardians of the genome,” Cell, vol. 136, no. 4, pp. 656–668, 2009.
[128]  J. Hock and G. Meister, “The Argonaute protein family,” Genome Biology, vol. 9, no. 2, article no. 210, 2008.
[129]  K. Saito and M. C. Siomi, “Small RNA-mediated quiescence of transposable elements in animals,” Developmental Cell, vol. 19, no. 5, pp. 687–697, 2010.
[130]  Y. Kirino, N. Kim, M. de Planell-Saguer et al., “Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability,” Nature Cell Biology, vol. 11, no. 5, pp. 652–658, 2009.
[131]  K. M. Nishida, T. N. Okada, T. Kawamura et al., “Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines,” EMBO Journal, vol. 28, no. 24, pp. 3820–3831, 2009.
[132]  Y. Kirino, A. Vourekas, N. Sayed et al., “Arginine methylation of aubergine mediates tudor binding and germ plasm localization,” RNA, vol. 16, no. 1, pp. 70–78, 2010.
[133]  H. Liu, J. Y. S. Wang, Y. Huang et al., “Structural basis for methylarginine-dependent recognition of Aubergine by Tudor,” Genes and Development, vol. 24, no. 17, pp. 1876–1881, 2010.
[134]  S. T. Grivna, B. Pyhtila, and H. Lin, “MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 36, pp. 13415–13420, 2006.
[135]  J. R. Kennerdell, S. Yamaguchi, and R. W. Carthew, “RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E,” Genes and Development, vol. 16, no. 15, pp. 1884–1889, 2002.
[136]  B. Brower-Toland, S. D. Findley, L. Jiang et al., “Drosophila PIWI associates with chromatin and interacts directly with HP1a,” Genes and Development, vol. 21, no. 18, pp. 2300–2311, 2007.
[137]  M. S. Klenov, S. A. Lavrov, A. D. Stolyarenko et al., “Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline,” Nucleic Acids Research, vol. 35, no. 16, pp. 5430–5438, 2007.
[138]  M. Pal-Bhadra, B. A. Leibovitch, S. G. Gandhi et al., “Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery,” Science, vol. 303, no. 5658, pp. 669–672, 2004.
[139]  S. Jaubert-Possamai, C. Rispe, S. Tanguy et al., “Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum,” Molecular Biology and Evolution, vol. 27, no. 5, pp. 979–987, 2010.
[140]  L. Jaskiewicz and W. Filipowicz, “Role of Dicer in posttranscriptional RNA silencing,” Current Topics in Microbiology and Immunology, vol. 320, pp. 77–97, 2008.
[141]  F. Legeai, G. Rizk, T. Walsh et al., “Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum,” BMC Genomics, vol. 11, no. 1, 2010.
[142]  Y. Wei, S. Chen, P. Yang, Z. Ma, and L. Kang, “Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust,” Genome biology, vol. 10, no. 1, p. R6, 2009.
[143]  D. B. Weaver, J. M. Anzola, J. D. Evans et al., “Computational and transcriptional evidence for microRNAs in the honey bee genome,” Genome Biology, vol. 8, no. 6, article no. R97, 2007.
[144]  H. L. Lu, S. Tanguy, C. Rispe et al., “Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: Diversification of expression profiles in different plastic morphs,” PLoS One, vol. 6, no. 12, article e28051, 2011.
[145]  E. Yigit, P. J. Batista, Y. Bei et al., “Analysis of the C. elegans argonaute family reveals that distinct argonautes act sequentially during RNAi,” Cell, vol. 127, no. 4, pp. 747–757, 2006.
[146]  C. Llorens, R. Futami, L. Covelli et al., “The Gypsy Database (GyDB) of mobile genetic elements: release 2.0,” Nucleic Acids Research, vol. 39, pp. D70–74, 2011.
[147]  S. J. Cokus, S. Feng, X. Zhang et al., “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning,” Nature, vol. 452, no. 7184, pp. 215–219, 2008.
[148]  A. Zemach, I. E. McDaniel, P. Silva, and D. Zilberman, “Genome-wide evolutionary analysis of eukaryotic DNA methylation,” Science, vol. 328, no. 5980, pp. 916–919, 2010.
[149]  S. Feng, S. J. Cokus, X. Zhang et al., “Conservation and divergence of methylation patterning in plants and animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8689–8694, 2010.
[150]  F. Lyko, B. H. Ramsahoye, and R. Jaenisch, “DNA methylation in Drosophila melanogaster,” Nature, vol. 408, no. 6812, pp. 538–540, 2000.
[151]  F. Lyko, S. Foret, R. Kucharski, S. Wolf, C. Falckenhayn, and R. Maleszka, “The honey bee epigenomes: differential methylation of brain DNA in queens and workers,” PLoS Biology, vol. 8, no. 11, Article ID e1000506, 2010.
[152]  V. K. Gangaraju, H. Yin, M. M. Weiner, J. Wang, X. A. Huang, and H. Lin, “Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation,” Nature Genetics, vol. 43, pp. 153–158, 2010.
[153]  T. Watanabe, S. Tomizawa, K. Mitsuya et al., “Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus,” Science, vol. 332, no. 6031, pp. 848–852, 2011.
[154]  J. Brennecke, C. D. Malone, A. A. Aravin, R. Sachidanandam, A. Stark, and G. J. Hannon, “An epigenetic role for maternally inherited piRNAs in transposon silencing,” Science, vol. 322, no. 5906, pp. 1387–1392, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413