全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epigenetic Variation May Compensate for Decreased Genetic Variation with Introductions: A Case Study Using House Sparrows (Passer domesticus) on Two Continents

DOI: 10.1155/2012/979751

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation. 1. Introduction Epigenetic variation may be important to ecology [1–4], and understanding its mechanistic basis will provide insights into population processes at both ecological and evolutionary time scales [5]. Epigenetics is the study of stably heritable phenotypes that occur without alterations in the DNA sequence [6]. Molecular epigenetic modifications, such as methylation, histone deacetylation, and small interfering RNAs, regulate gene expression and are a significant contributor to phenotypic variation in diverse taxa [7]. Epigenetic modifications may vary between genome regions, over time, and in response to environmental stressors [1, 8, 9] and even among individuals and populations [10–15]. Epigenetic modification of gene expression may enable organisms to adjust their phenotypes to match novel environments or provide them the ability to quickly respond to a changing environment [16]. Epigenetic variation potentially has an ecologically relevant role in the adaptation of introduced or invasive species to novel environments. Typically, introduced or invasive species will not be adapted to their new environments and will be hampered by reduced genetic variation associated with bottlenecks or founder effects, which creates a genetic paradox [17]. Over the ecological time scales of invasions, mutation and recombination would rarely provide sufficient sources of

References

[1]  B. Angers, E. Castonguay, and R. Massicotte, “Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after,” Molecular Ecology, vol. 19, no. 7, pp. 1283–1295, 2010.
[2]  C. L. Richards, O. Bossdorf, and K. J. F. Verhoeven, “Understanding natural epigenetic variation,” New Phytologist, vol. 187, no. 3, pp. 562–564, 2010.
[3]  C. L. Richards, O. Bossdorf, and M. Pigliucci, “What role does heritable epigenetic variation play in phenotypic evolution?” BioScience, vol. 60, no. 3, pp. 232–237, 2010.
[4]  O. Bossdorf, C. L. Richards, and M. Pigliucci, “Epigenetics for ecologists,” Ecology Letters, vol. 11, no. 2, pp. 106–115, 2008.
[5]  E. J. Richards, “Population epigenetics,” Current Opinion in Genetics and Development, vol. 18, no. 2, pp. 221–226, 2008.
[6]  S. L. Berger, T. Kouzarides, R. Shiekhattar, and A. Shilatifard, “An operational definition of epigenetics,” Genes and Development, vol. 23, no. 7, pp. 781–783, 2009.
[7]  N. C. Whitelaw and E. Whitelaw, “How lifetimes shape epigenotype within and across generations,” Human Molecular Genetics, vol. 15, no. 2, pp. R131–R137, 2006.
[8]  K. J. F. Verhoeven, J. J. Jansen, P. J. van Dijk, and A. Biere, “Stress-induced DNA methylation changes and their heritability in asexual dandelions,” New Phytologist, vol. 185, no. 4, pp. 1108–1118, 2010.
[9]  J. Molinier, G. Ries, C. Zipfel, and B. Hohn, “Transgeneration memory of stress in plants,” Nature, vol. 442, no. 7106, pp. 1046–1049, 2006.
[10]  M. T. Cervera, L. Ruiz-García, and J. M. Martínez-Zapater, “Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers,” Molecular Genetics and Genomics, vol. 268, no. 4, pp. 543–552, 2002.
[11]  S. H. Rangwala, R. Elumalai, C. Vanier, H. Ozkan, D. W. Galbraith, and E. J. Richards, “Meiotically stable natural epialleles of Sadhu, a novel arabidopsis retroposon,” PLoS Genetics, vol. 2, no. 3. article e36, pp. 270–281, 2006.
[12]  M. W. Vaughn, M. Tanurd?i?, Z. Lippman et al., “Epigenetic natural variation in Arabidopsis thaliana,” PLoS Biology, vol. 5, no. 7, pp. 1617–1629, 2007.
[13]  R. Lister, M. Pelizzola, R. H. Dowen et al., “Human DNA methylomes at base resolution show widespread epigenomic differences,” Nature, vol. 462, no. 7271, pp. 315–322, 2009.
[14]  C. M. Herrera and P. Bazaga, “Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis,” New Phytologist, vol. 187, no. 3, pp. 867–876, 2010.
[15]  C. M. Herrera and P. Bazaga, “Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory,” Molecular Ecology, vol. 20, no. 8, pp. 1675–1688, 2011.
[16]  O. J. Rando and K. J. Verstrepen, “Timescales of Genetic and Epigenetic Inheritance,” Cell, vol. 128, no. 4, pp. 655–668, 2007.
[17]  J. E. Pérez, M. Nirchio, C. Alfonsi, and C. Mu?oz, “The biology of invasions: the genetic adaptation paradox,” Biological Invasions, vol. 8, no. 5, pp. 1115–1121, 2006.
[18]  O. Bossdorf, H. Auge, L. Lafuma, W. E. Rogers, E. Siemann, and D. Prati, “Phenotypic and genetic differentiation between native and introduced plant populations,” Oecologia, vol. 144, no. 1, pp. 1–11, 2005.
[19]  C. L. Richards, O. Bossdorf, N. Z. Muth, J. Gurevitch, and M. Pigliucci, “Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions,” Ecology Letters, vol. 9, no. 8, pp. 981–993, 2006.
[20]  A. B. Nicotra, O. K. Atkin, S. P. Bonser et al., “Plant phenotypic plasticity in a changing climate,” Trends in Plant Science, vol. 15, no. 12, pp. 684–692, 2010.
[21]  R. Jaenisch and A. Bird, “Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals,” Nature Genetics, vol. 33, supplement, pp. S245–S254, 2003.
[22]  K. Manning, M. T?r, M. Poole et al., “A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening,” Nature Genetics, vol. 38, no. 8, pp. 948–952, 2006.
[23]  P. Cubas, C. Vincent, and E. Coen, “An epigenetic mutation responsible for natural variation in floral symmetry,” Nature, vol. 401, no. 6749, pp. 157–161, 1999.
[24]  V. K. Rakyan, S. Chong, M. E. Champ et al., “Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2538–2543, 2003.
[25]  H. D. Morgan, H. G. E. Sutherland, D. I. K. Martin, and E. Whitelaw, “Epigenetic inheritance at the agouti locus in the mouse,” Nature Genetics, vol. 23, no. 3, pp. 314–318, 1999.
[26]  R. Kucharski, J. Maleszka, S. Foret, and R. Maleszka, “Nutritional control of reproductive status in honeybees via DNA methylation,” Science, vol. 319, no. 5871, pp. 1827–1830, 2008.
[27]  C. Biémont, “From genotype to phenotype. What do epigenetics and epigenomics tell us,” Heredity, vol. 105, no. 1, pp. 1–3, 2010.
[28]  E. Heard and C. M. Disteche, “Dosage compensation in mammals: fine-tuning the expression of the X chromosome,” Genes and Development, vol. 20, no. 14, pp. 1848–1867, 2006.
[29]  F. Johannes, E. Porcher, F. K. Teixeira et al., “Assessing the impact of transgenerational epigenetic variation on complex traits,” PLoS Genetics, vol. 5, no. 6, pp. 1–11, 2009.
[30]  L. Z. Xiong, C. G. Xu, M. A. Saghai Maroof, and Q. Zhang, “Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique,” Molecular and General Genetics, vol. 261, no. 3, pp. 439–446, 1999.
[31]  A. Salmon, J. Clotault, E. Jenczewski, V. Chable, and M. J. Manzanares-Dauleux, “Brassica oleracea displays a high level of DNA methylation polymorphism,” Plant Science, vol. 174, no. 1, pp. 61–70, 2008.
[32]  A. Salmon, M. L. Ainouche, and J. F. Wendel, “Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae),” Molecular Ecology, vol. 14, no. 4, pp. 1163–1175, 2005.
[33]  T. R. Anderson, Biology of the Ubiquitous House Sparrow, Oxford University Press, New York, NY, USA, 2006.
[34]  R. F. Johnston and R. K. Selander, “House sparrows: rapid evolution of races in North America,” Science, vol. 144, no. 3618, pp. 550–552, 1964.
[35]  R. Johnston and R. Selander, “Evolution in the house sparrow—III. Variation in size and sexual dimorphism in Europe and North and South America,” American Naturalist, vol. 107, no. 955, pp. 373–390, 1973.
[36]  A. W. Schrey, M. Grispo, M. Awad et al., “Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations,” Molecular Ecology, vol. 20, no. 6, pp. 1133–1143, 2011.
[37]  International Chicken Genome Sequencing Consortium, “Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution,” Nature, vol. 432, pp. 695–716, 2004.
[38]  L. B. Martin, M. I. Pless, and M. C. Wikelski, “Greater seasonal variation in blood and ectoparasite infections in a temperate than a tropical population of House Sparrows Passer domesticus in North America,” Ibis, vol. 149, no. 2, pp. 419–423, 2007.
[39]  L. B. Martin, J. L. Alam, T. Imboma, and A. L. Liebl, “Variation in inflammation as a correlate of range expansion in Kenyan house sparrows,” Oecologia, vol. 164, no. 2, pp. 339–347, 2010.
[40]  J. D. Summers-Smith, The Sparrows: A Study of the Genus Passer, T. and A. D. Poyser Ltd, Staffordshire, England, UK, 19878.
[41]  R. S. Ridgely and J. A. Gwynne, A Guide to the Birds of Panama, Princeton University Press, Princeton, NJ, USA, 2nd edition, 1992.
[42]  G. E. Reyna-López, J. Simpson, and J. Ruiz-Herrera, “Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms,” Molecular and General Genetics, vol. 253, no. 6, pp. 703–710, 1997.
[43]  Wolf Lab, “AFLP Protocol,” 2000, http://bioweb.usu.edu/wolf/aflp_protocol.htm.
[44]  R. Peakall and P. E. Smouse, “GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research,” Molecular Ecology Notes, vol. 6, no. 1, pp. 288–295, 2006.
[45]  M. Foll and O. Gaggiotti, “A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective,” Genetics, vol. 180, no. 2, pp. 977–993, 2008.
[46]  E. J. Richards, “Inherited epigenetic variation—revisiting soft inheritance,” Nature Reviews Genetics, vol. 7, no. 5, pp. 395–401, 2006.
[47]  S. Gilbert and D. Epel, Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution, Sinauer Associates, Sunderland, Mass, USA, 2009.
[48]  I. C. G. Weaver, N. Cervoni, F. A. Champagne et al., “Epigenetic programming by maternal behavior,” Nature Neuroscience, vol. 7, no. 8, pp. 847–854, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413