全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

DOI: 10.1155/2012/918267

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2?DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. 1. Introduction Endothelial cell dysfunction (ECD) is a broad term which implies dysregulation of endothelial cell functions, including impairment of the barrier functions of endothelial cells, vasodilation, disturbances in proliferative capacities, migratory as well as tube formation properties, angiogenic properties, attenuation of synthetic function, and deterrence of white blood cells from adhesion and diapedesis [1]. Several factors contribute to ECD including smoking, high blood pressure, diabetes, high cholesterol levels, obesity, hyperglycemia, advance glycation end products (AGEs), and genetic factors [1, 2]. Diabetes is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin, which contributes to ECD. About 170 million people worldwide are affected by diabetes including 20.8 million diabetic patients in the USA, numbers projected to double by 2030 [3]. Diabetes can be stratified into two groups with type 1 diabetes being insulin dependent and type II insulin independent. Both type 1 and type 2 cause hyperglycemia, which in turn causes endothelial dysfunction by its different glycooxidative products. Type 2 diabetes causes insulin resistance which is also responsible for endothelial dysfunction [4]. Obesity, which is individually a risk factor for EC dysfunction is also closely related to type 2 diabetes [5]. These two amplify the ECD more frequently. Angiogenesis or

References

[1]  M. S. Goligorsky, “Endothelial cell dysfunction: can't live with it, how to live without it,” American Journal of Physiology, vol. 288, no. 5, pp. F871–F880, 2005.
[2]  J. Deanfield, A. Donald, C. Ferri et al., “Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the working group on endothelin and endothelial factors of the European society of hypertension,” Journal of Hypertension, vol. 23, no. 1, pp. 7–17, 2005.
[3]  S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global Prevalence of Diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.
[4]  H. Li, B. Isomaa, M. R. Taskinen, L. Groop, and T. Tuomi, “Consequences of a family history of type 1 and type 2 diabetes on the phenotype of patients with type 2 diabetes,” Diabetes Care, vol. 23, no. 5, pp. 589–594, 2000.
[5]  J. Steinberger and S. R. Daniels, “Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American heart association scientific statement from the atherosclerosis, hypertension, and obesity in the young committee (council on cardiovascular disease in the young) and the diabetes committee (council on nutrition, physical activity, and metabolism),” Circulation, vol. 107, no. 10, pp. 1448–1453, 2003.
[6]  S. C. Bir, J. Esaki, A. Marui et al., “Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse,” Journal of Vascular Surgery, vol. 50, no. 4, pp. 870–879, 2009.
[7]  R. Cao, E. Br?kenhielm, R. Pawliuk et al., “Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2,” Nature Medicine, vol. 9, no. 5, pp. 604–613, 2003.
[8]  A. Martin, M. R. Komada, and D. C. Sane, “Abnormal angiogenesis in diabetes mellitus,” Medicinal Research Reviews, vol. 23, no. 2, pp. 117–145, 2003.
[9]  H. Cai and D. G. Harrison, “Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress,” Circulation Research, vol. 87, no. 10, pp. 840–844, 2000.
[10]  A. N. Al-Isa, L. Thalib, and A. O. Akanji, “Circulating markers of inflammation and endothelial dysfunction in Arab adolescent subjects: reference ranges and associations with age, gender, body mass and insulin sensitivity,” Atherosclerosis, vol. 208, no. 2, pp. 543–549, 2010.
[11]  E. Corrado, M. Rizzo, G. Coppola, I. Muratori, M. Carella, and S. Novo, “Endothelial dysfunction and carotid lesions are strong predictors of clinical events in patients with early stages of atherosclerosis: a 24-month follow-up study,” Coronary Artery Disease, vol. 19, no. 3, pp. 139–144, 2008.
[12]  F. Perticone, R. Ceravolo, A. Pujia et al., “Prognostic significance of endothelial dysfunction in hypertensive patients,” Circulation, vol. 104, no. 2, pp. 191–196, 2001.
[13]  R. Bucala, K. J. Tracey, and A. Cerami, “Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes,” The Journal of Clinical Investigation, vol. 87, no. 2, pp. 432–438, 1991.
[14]  E. J. Suuronen, S. Hazra, P. Zhang et al., “Impairment of human cell-based vasculogenesis in rats by hypercholesterolemia-induced endothelial dysfunction and rescue with l-arginine supplementation,” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 1, pp. 209–216, 2010.
[15]  H. Kaneto, N. Katakami, M. Matsuhisa, and T. A. Matsuoka, “Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis,” Mediators of Inflammation, vol. 2010, Article ID 453892, 11 pages, 2010.
[16]  P. K. Witting, B. S. Rayner, B. J. Wu, N. A. Ellis, and R. Stocker, “Hydrogen peroxide promotes endothelial dysfunction by stimulating multiple sources of superoxide anion radical production and decreasing nitric oxide bioavailability,” Cellular Physiology and Biochemistry, vol. 20, no. 5, pp. 255–268, 2007.
[17]  D. R. McCance, R. L. Hanson, D. J. Pettitt, P. H. Bennett, D. R. Hadden, and W. C. Knowler, “Diagnosing diabetes mellitus—do we need new criteria?” Diabetologia, vol. 40, no. 3, pp. 247–255, 1997.
[18]  A. Hviid, M. Stellfeld, J. Wohlfahrt, and M. Melbye, “Childhood vaccination and type 1 diabetes,” The New England Journal of Medicine, vol. 350, no. 14, pp. 1398–1404, 2004.
[19]  M. MacKinnon, “Type 2 diabetes,” Nursing Standard, vol. 14, no. 10, pp. 39–46, 1999.
[20]  P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nature Medicine, vol. 6, no. 4, pp. 389–395, 2000.
[21]  P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000.
[22]  G. L. Semenza, “Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling,” Journal of Cellular Biochemistry, vol. 102, no. 4, pp. 840–847, 2007.
[23]  E. Wahlberg, “Angiogenesis and arteriogenesis in limb ischemia,” Journal of Vascular Surgery, vol. 38, no. 1, pp. 198–203, 2003.
[24]  A. Helisch and W. Schaper, “Arteriogenesis: the development and growth of collateral arteries,” Microcirculation, vol. 10, no. 1, pp. 83–97, 2003.
[25]  P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007.
[26]  T. M. Paravicini and R. M. Touyz, “NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities,” Diabetes Care, vol. 31, pp. S170–S180, 2008.
[27]  M. Kajiya, M. Hirota, Y. Inai et al., “Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats,” American Journal of Physiology, vol. 292, no. 6, pp. H2737–H2744, 2007.
[28]  H. Shimokawa and T. Matoba, “Hydrogen peroxide as an endothelium-derived hyperpolarizing factor,” Pharmacological Research, vol. 49, no. 6, pp. 543–549, 2004.
[29]  S. Tsuji, S. Taniuchi, M. Hasui, A. Yamamoto, and Y. Kobayashi, “Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim-sulfamethoxazole,” Nitric Oxide, vol. 7, no. 4, pp. 283–288, 2002.
[30]  A. San Martín, P. Du, A. Dikalova et al., “Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes,” American Journal of Physiology, vol. 292, no. 5, pp. H2073–H2082, 2007.
[31]  K. Pawlak, B. Naumnik, S. Brzósko, D. Pawlak, and M. My?liwiec, “Oxidative stress—a link between endothelial injury, coagulation activation, and atherosclerosis in haemodialysis patients,” American Journal of Nephrology, vol. 24, no. 1, pp. 154–161, 2004.
[32]  G. X. Shen, “Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 241–248, 2010.
[33]  L. Mira, L. Maia, L. Barreira, and C. F. Manso, “Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism,” Archives of Biochemistry and Biophysics, vol. 318, no. 1, pp. 53–58, 1995.
[34]  T. K. Kundu, R. Hille, M. Velayutham, and J. L. Zweier, “Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues,” Archives of Biochemistry and Biophysics, vol. 460, no. 1, pp. 113–121, 2007.
[35]  H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and Biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes,” Free Radical Biology and Medicine, vol. 11, no. 1, pp. 81–128, 1991.
[36]  J. A. Badwey and M. L. Karnovsky, “Production of superoxide and hydrogen peroxide by an NADH oxidase in guinea pig polymorphonuclear leukocytes. Modulation by nucleotides and divalent cations,” The Journal of Biological Chemistry, vol. 254, no. 22, pp. 11530–11537, 1979.
[37]  A. Bravard, C. Bonnard, A. Durand et al., “Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice,” American Journal of Physiology, vol. 300, no. 3, pp. E581–E591, 2011.
[38]  S. Matsumoto, I. Koshiishi, T. Inoguchi, H. Nawata, and H. Utsumi, “Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice,” Free Radical Research, vol. 37, no. 7, pp. 767–772, 2003.
[39]  C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008.
[40]  P. Ulrich and A. Cerami, “Protein glycation, diabetes, and aging,” Recent Progress in Hormone Research, vol. 56, pp. 1–21, 2001.
[41]  J. Su, P. A. Lucchesi, R. A. Gonzalez-Villalobos et al., “Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 8, pp. 1432–1438, 2008.
[42]  G. Lenaz, C. Bovina, M. D'Aurelio et al., “Role of mitochondria in oxidative stress and aging,” Annals of the New York Academy of Sciences, vol. 959, pp. 199–213, 2002.
[43]  E. Fosslien, “Review: mitochondrial medicine—molecular pathology of defective oxidative phosphorylation,” Annals of Clinical and Laboratory Science, vol. 31, no. 1, pp. 25–67, 2001.
[44]  M. A. Abdul-Ghani, M. Matsuda, and R. A. DeFronzo, “Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects,” Diabetic Medicine, vol. 25, no. 11, pp. 1289–1294, 2008.
[45]  S. M. Davidson and M. R. Duchen, “Endothelial mitochondria: contributing to vascular function and disease,” Circulation Research, vol. 100, no. 8, pp. 1128–1141, 2007.
[46]  T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000.
[47]  R. Bottino, A. N. Balamurugan, H. Tse et al., “Response of human islets to isolation stress and the effect of antioxidant treatment,” Diabetes, vol. 53, no. 10, pp. 2559–2568, 2004.
[48]  D. R. Gamble, K. W. Taylor, and H. Cumming, “Coxsackie viruses and diabetes mellitus,” British Medical Journal, vol. 4, no. 5887, pp. 260–262, 1973.
[49]  R. Gyurko, C. C. Siqueira, N. Caldon, L. Gao, A. Kantarci, and T. E. Van Dyke, “Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice,” Journal of Immunology, vol. 177, no. 10, pp. 7250–7256, 2006.
[50]  P. Maechler, L. Jornot, and C. B. Wollheim, “Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells,” The Journal of Biological Chemistry, vol. 274, no. 39, pp. 27905–27913, 1999.
[51]  N. Takasu, I. Komiya, T. Asawa, Y. Nagasawa, and T. Yamada, “Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets: H2O2 as mediator for DNA fragmentation,” Diabetes, vol. 40, no. 9, pp. 1141–1145, 1991.
[52]  W. L. Suarez-Pinzon, C. Szabó, and A. Rabinovitch, “Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β-cells,” Diabetes, vol. 46, no. 5, pp. 907–911, 1997.
[53]  S. Lenzen, J. Drinkgern, and M. Tiedge, “Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues,” Free Radical Biology and Medicine, vol. 20, no. 3, pp. 463–466, 1996.
[54]  S. Lenzen, “Oxidative stress: the vulnerable β-cell,” Biochemical Society Transactions, vol. 36, no. 3, pp. 343–347, 2008.
[55]  J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes,” Endocrine Reviews, vol. 23, no. 5, pp. 599–622, 2002.
[56]  V. Poitout and R. P. Robertson, “Minireview: secondary β-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity,” Endocrinology, vol. 143, no. 2, pp. 339–342, 2002.
[57]  J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002.
[58]  G. S. Hotamisligil, “Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes,” Diabetes, vol. 54, no. 2, pp. S73–S78, 2005.
[59]  G. M. Pieper and G. J. Gross, “Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta,” American Journal of Physiology, vol. 255, no. 4, pp. H825–H833, 1988.
[60]  P. R?sen, P. P. Nawroth, G. King, W. M?ller, H. J. Tritschler, and L. Packer, “The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American diabetes association and the German diabetes society,” Diabetes/Metabolism Research and Reviews, vol. 17, no. 3, pp. 189–212, 2001.
[61]  B. Tesfamariam, “Free radicals in diabetic endothelial cell dysfunction,” Free Radical Biology and Medicine, vol. 16, no. 3, pp. 383–391, 1994.
[62]  A. Tirosh, R. Potashnik, N. Bashan, and A. Rudich, “Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes: a putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation,” The Journal of Biological Chemistry, vol. 274, no. 15, pp. 10595–10602, 1999.
[63]  G. Waeber, J. Delplanque, C. Bonny et al., “The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes,” Nature Genetics, vol. 24, no. 3, pp. 291–295, 2000.
[64]  I. C. West, “Radicals and oxidative stress in diabetes,” Diabetic Medicine, vol. 17, no. 3, pp. 171–180, 2000.
[65]  Y. K. Kim, M. S. Lee, S. M. Son et al., “Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes,” Diabetes, vol. 51, no. 2, pp. 522–527, 2002.
[66]  Y. Oyama, H. Kawasaki, Y. Hattori, and M. Kanno, “Attenuation of endothelium-dependent relaxation in aorta from diabetic rats,” European Journal of Pharmacology, vol. 132, no. 1, pp. 75–78, 1986.
[67]  R. W. Alexander, “Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective,” Hypertension, vol. 25, no. 2, pp. 155–161, 1995.
[68]  M. P. Vitek, K. Bhattacharya, J. M. Glendening et al., “Advanced glycation end products contribute to amyloidosis in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 4766–4770, 1994.
[69]  T. G. Ebrahimian, C. Heymes, D. You et al., “NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes,” American Journal of Pathology, vol. 169, no. 2, pp. 719–728, 2006.
[70]  A. Rivard, M. Silver, D. Chen et al., “Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF,” American Journal of Pathology, vol. 154, no. 2, pp. 355–363, 1999.
[71]  R. Tamarat, J. S. Silvestre, M. Huijberts et al., “Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8555–8560, 2003.
[72]  J. Waltenberger, J. Lange, and A. Kranz, “Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals,” Circulation, vol. 102, no. 2, pp. 185–190, 2000.
[73]  O. M. Tepper, R. D. Galiano, J. M. Capla et al., “Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures,” Circulation, vol. 106, no. 22, pp. 2781–2786, 2002.
[74]  N. N. Deshpande, D. Sorescu, P. Seshiah et al., “Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle,” Antioxidants and Redox Signaling, vol. 4, no. 5, pp. 845–854, 2002.
[75]  K. K. Griendling and G. A. FitzGerald, “Oxidative stress and cardiovascular injury: part ii: animal and human studies,” Circulation, vol. 108, no. 17, pp. 2034–2040, 2003.
[76]  T. Tojo, M. Ushio-Fukai, M. Yamaoka-Tojo, S. Ikeda, N. Patrushev, and R. W. Alexander, “Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia,” Circulation, vol. 111, no. 18, pp. 2347–2355, 2005.
[77]  T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002.
[78]  E. A. Ellis, D. L. Guberski, M. Somogyi-Mann, and M. B. Grant, “Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/WOR diabetic rat,” Free Radical Biology and Medicine, vol. 28, no. 1, pp. 91–101, 2000.
[79]  K. K. Griendling, D. Sorescu, and M. Ushio-Fukai, “NAD(P)H oxidase: role in cardiovascular biology and disease,” Circulation Research, vol. 86, no. 5, pp. 494–501, 2000.
[80]  T. Sonta, T. Inoguchi, H. Tsubouchi et al., “Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity,” Free Radical Biology and Medicine, vol. 37, no. 1, pp. 115–123, 2004.
[81]  M. Ushio-Fukai, Y. Tang, T. Fukai et al., “Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis,” Circulation Research, vol. 91, no. 12, pp. 1160–1167, 2002.
[82]  M. Al-Shabrawey, M. Rojas, T. Sanders et al., “Role of NADPH oxidase in retinal vascular inflammation,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 3239–3244, 2008.
[83]  M. Al-Shabrawey, M. Bartoli, A. B. El-Remessy et al., “Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 3231–3238, 2008.
[84]  U. Hink, H. Li, H. Mollnau et al., “Mechanisms underlying endothelial dysfunction in diabetes mellitus,” Circulation Research, vol. 88, no. 2, pp. E14–E22, 2001.
[85]  A. Aicher, C. Heeschen, C. Mildner-Rihm et al., “Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells,” Nature Medicine, vol. 9, no. 11, pp. 1370–1376, 2003.
[86]  K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007.
[87]  G. P. Fadini, C. Agostini, S. Sartore, and A. Avogaro, “Endothelial progenitor cells in the natural history of atherosclerosis,” Atherosclerosis, vol. 194, no. 1, pp. 46–54, 2007.
[88]  C. J. M. Loomans, E. J. P. de Koning, F. J. T. Staal et al., “Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes,” Diabetes, vol. 53, no. 1, pp. 195–199, 2004.
[89]  M. Igarashi, H. Wakasaki, N. Takahara et al., “Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways,” The Journal of Clinical Investigation, vol. 103, no. 2, pp. 185–195, 1999.
[90]  S. A. Wohaieb and D. V. Godin, “Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment,” Diabetes, vol. 36, no. 9, pp. 1014–1018, 1987.
[91]  E. Aktunc, V. H. Ozacmak, H. S. Ozacmak et al., “N-acetyl cysteine promotes angiogenesis and clearance of free oxygen radicals, thus improving wound healing in an alloxan-induced diabetic mouse model of incisional wound,” Clinical and Experimental Dermatology, vol. 35, no. 8, pp. 902–909, 2010.
[92]  A. Abaci, A. Oguzhan, S. Kahraman et al., “Effect of diabetes mellitus on formation of coronary collateral vessels,” Circulation, vol. 99, no. 17, pp. 2239–2242, 1999.
[93]  H. G. Bohlen and J. M. Lash, “Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles,” American Journal of Physiology, vol. 265, no. 1, pp. H219–H225, 1993.
[94]  G. M. Pieper, D. A. Meier, and S. R. Hager, “Endothelial dysfunction in a model of hyperglycemia and hyperinsulinemia,” American Journal of Physiology, vol. 269, no. 3, pp. H845–H850, 1995.
[95]  B. Tesfamariam, M. L. Brown, D. Deykin, and R. A. Cohen, “Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta,” The Journal of Clinical Investigation, vol. 85, no. 3, pp. 929–932, 1990.
[96]  P. Clarkson, D. S. Celermajer, A. E. Donald et al., “Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels,” Journal of the American College of Cardiology, vol. 28, no. 3, pp. 573–579, 1996.
[97]  M. T. Johnstone, S. J. Creager, K. M. Scales, J. A. Cusco, B. K. Lee, and M. A. Creager, “Impaired endothelium-dependent vasodilation in patients with insulin- dependent diabetes mellitus,” Circulation, vol. 88, no. 6, pp. 2510–2516, 1993.
[98]  S. B. Williams, J. A. Cusco, M. A. Roddy, M. T. Johnstone, and M. A. Creager, “Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus,” Journal of the American College of Cardiology, vol. 27, no. 3, pp. 567–574, 1996.
[99]  G. L. King, “The role of hyperglycaemia and hyperinsulinaemia in causing vascular dysfunction in diabetes,” Annals of Medicine, vol. 28, no. 5, pp. 427–432, 1996.
[100]  C. Rask-Madsen and G. L. King, “Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 1, pp. 46–56, 2007.
[101]  K. C. B. Tan, W. S. Chow, V. H. G. Ai, and K. S. L. Lam, “Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria,” Diabetes/Metabolism Research and Reviews, vol. 18, no. 1, pp. 71–76, 2002.
[102]  J. A. Kim, M. Montagnani, K. K. Kwang, and M. J. Quon, “Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms,” Circulation, vol. 113, no. 15, pp. 1888–1904, 2006.
[103]  B. Tesfamariam, M. L. Brown, and R. A. Cohen, “Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C,” The Journal of Clinical Investigation, vol. 87, no. 5, pp. 1643–1648, 1991.
[104]  I. Saenz de Tejada, I. Goldstein, K. Azadzoi, R. J. Krane, and R. A. Cohen, “Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence,” The New England Journal of Medicine, vol. 320, no. 16, pp. 1025–1030, 1989.
[105]  H. H. Ting, F. K. Timimi, K. S. Boles, S. J. Creager, P. Ganz, and M. A. Creager, “Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus,” The Journal of Clinical Investigation, vol. 97, no. 1, pp. 22–28, 1996.
[106]  G. M. Pieper, G. Moore-Hilton, and A. M. Roza, “Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat,” Life Sciences, vol. 58, no. 9, pp. PL147–PL152, 1996.
[107]  X. L. Du, D. Edelstein, S. Dimmeler, Q. Ju, C. Sui, and M. Brownlee, “Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site,” The Journal of Clinical Investigation, vol. 108, no. 9, pp. 1341–1348, 2001.
[108]  A. Veves, C. M. Akbari, J. Primavera et al., “Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration,” Diabetes, vol. 47, no. 3, pp. 457–463, 1998.
[109]  C. Wadham, A. Parker, L. Wang, and P. Xia, “High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress,” Diabetes, vol. 56, no. 11, pp. 2715–2721, 2007.
[110]  M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001.
[111]  M. A. Creager, T. F. Lüscher, F. Cosentino, and J. A. Beckman, “Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: part I,” Circulation, vol. 108, no. 12, pp. 1527–1532, 2003.
[112]  N. J. Alp and K. M. Channon, “Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 413–420, 2004.
[113]  S. Cai, J. Khoo, S. Mussa, N. J. Alp, and K. M. Channon, “Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation,” Diabetologia, vol. 48, no. 9, pp. 1933–1940, 2005.
[114]  G. E. McVeigh, G. M. Brennan, G. D. Johnston et al., “Impaired endothelium-dependent and independent vasodilation in patients with Type 2 (non-insulin-dependent) diabetes mellitus,” Diabetologia, vol. 35, no. 8, pp. 771–776, 1992.
[115]  Y. Wang, X. Wei, X. Xiao et al., “Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways,” Journal of Pharmacology and Experimental Therapeutics, vol. 314, no. 2, pp. 522–532, 2005.
[116]  R. R. Shankar, Y. Wu, H. Q. Shen, J. S. Zhu, and A. D. Baron, “Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance,” Diabetes, vol. 49, no. 5, pp. 684–687, 2000.
[117]  M. Montagnani, H. Chen, V. A. Barr, and M. J. Quon, “Insulin-stimulated activation of enos is independent of ca2+ but requires phosphorylation by akt at ser(1179),” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30392–30398, 2001.
[118]  J.-X. Chen and A. Stinnett, “Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1606–1613, 2008.
[119]  T. Issad, E. Masson, and P. Pagesy, “O-GlcNAc modification, insulin signaling and diabetic complications,” Diabetes and Metabolism, vol. 36, no. 6, pp. 423–435, 2010.
[120]  B. Musicki, M. F. Kramer, R. E. Becker, and A. L. Burnett, “Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11870–11875, 2005.
[121]  V. V. Lima, F. R. C. Giachini, F. S. Carneiro et al., “Increased vascular O-GlcNAcylation augments reactivity to constrictor stimuli—vasoactive peptide symposium,” Journal of the American Society of Hypertension, vol. 2, no. 6, pp. 410–417, 2008.
[122]  K. Taguchi, T. Kobayashi, Y. Takenouchi, T. Matsumoto, and K. Kamata, “Angiotensin II causes endothelial dysfunction via the GRK2/Akt/eNOS pathway in aortas from a murine type 2 diabetic model,” Pharmacological Research, vol. 64, no. 5, pp. 535–546, 2011.
[123]  J. W. Elrod, M. R. Duranski, W. Langston et al., “eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes: a role for enos uncoupling,” Circulation Research, vol. 99, no. 1, pp. 78–85, 2006.
[124]  F. C. Sasso, D. Torella, O. Carbonara et al., “Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease,” Journal of the American College of Cardiology, vol. 46, no. 5, pp. 827–834, 2005.
[125]  C. A. Chen, T. Y. Wang, S. Varadharaj et al., “S-glutathionylation uncouples eNOS and regulates its cellular and vascular function,” Nature, vol. 468, no. 7327, pp. 1115–1120, 2010.
[126]  M. R. Kapadia, L. W. Chow, N. D. Tsihlis et al., “Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia,” Journal of Vascular Surgery, vol. 47, no. 1, pp. 173–182, 2008.
[127]  D. S. Marks, J. A. Vita, J. D. Folts, J. F. Keaney, G. N. Welch, and J. Loscalzo, “Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide,” The Journal of Clinical Investigation, vol. 96, no. 6, pp. 2630–2638, 1995.
[128]  S. S. Ahanchi, V. N. Varu, N. D. Tsihlis et al., “Heightened efficacy of nitric oxide-based therapies in type II diabetes mellitus and metabolic syndrome,” American Journal of Physiology, vol. 295, no. 6, pp. H2388–H2398, 2008.
[129]  J. W. Calvert, S. Gundewar, S. Jha et al., “Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS- mediated signaling,” Diabetes, vol. 57, no. 3, pp. 696–705, 2008.
[130]  S. V. Penumathsa, M. Thirunavukkarasu, S. M. Samuel et al., “Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury,” Biochimica et Biophysica Acta, vol. 1792, no. 1, pp. 39–48, 2009.
[131]  H. Duplain, ?. Burcelin, C. Sartori et al., “Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase,” Circulation, vol. 104, no. 3, pp. 342–345, 2001.
[132]  G. J. Waldron, H. Ding, F. Lovren, P. Kubes, and C. R. Triggle, “Acetylcholine-induced relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide synthase,” British Journal of Pharmacology, vol. 128, no. 3, pp. 653–658, 1999.
[133]  C. Cardillo and J. A. Panza, “Impaired endothelial regulation of vascular tone in patients with systemic arterial hypertension,” Vascular Medicine, vol. 3, no. 2, pp. 138–144, 1998.
[134]  A. Bouloumié, J. Bauersachs, W. Linz et al., “Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production,” Hypertension, vol. 30, no. 4, pp. 934–941, 1997.
[135]  F. Cosentino, K. Hishikawa, Z. S. Katusic, and T. F. Lüscher, “High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells,” Circulation, vol. 96, no. 1, pp. 25–28, 1997.
[136]  U. F?rstermann and T. Münzel, “Endothelial nitric oxide synthase in vascular disease: from marvel to menace,” Circulation, vol. 113, no. 13, pp. 1708–1714, 2006.
[137]  M. Pannirselvam, S. Verma, T. J. Anderson, and C. R. Triggle, “Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability,” British Journal of Pharmacology, vol. 136, no. 2, pp. 255–263, 2002.
[138]  G. M. Pieper, “Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction,” Hypertension, vol. 31, no. 5, pp. 1047–1060, 1998.
[139]  J. Vasquez-Vivar, P. Martasek, J. Whitsett, J. Joseph, and B. Kalyanaraman, “The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study,” Biochemical Journal, vol. 362, no. 3, pp. 733–739, 2002.
[140]  C. S. Raman, H. Li, P. Martásek, V. Král, B. S. S. Masters, and T. L. Poulos, “Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center,” Cell, vol. 95, no. 7, pp. 939–950, 1998.
[141]  K. M. Channon, “Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease,” Trends in Cardiovascular Medicine, vol. 14, no. 8, pp. 323–327, 2004.
[142]  Z. S. Katusic and L. V. D'Uscio, “Tetrahydrobiopterin: mediator of endothelial protection,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 397–398, 2004.
[143]  J. B. Laursen, M. Somers, S. Kurz et al., “Endothelial regulation of vasomotion in ApoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin,” Circulation, vol. 103, no. 9, pp. 1282–1288, 2001.
[144]  F. Cosentino, M. Eto, P. De Paolis et al., “High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species,” Circulation, vol. 107, no. 7, pp. 1017–1023, 2003.
[145]  I. P. Salt, V. A. Morrow, F. M. Brandie, J. M. C. Connell, and J. R. Petrie, “High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells,” The Journal of Biological Chemistry, vol. 278, no. 21, pp. 18791–18797, 2003.
[146]  M. H. Zou, C. Shi, and R. A. Cohen, “Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite,” The Journal of Clinical Investigation, vol. 109, no. 6, pp. 817–826, 2002.
[147]  N. Kuzkaya, N. Weissmann, D. G. Harrison, and S. Dikalov, “Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase,” The Journal of Biological Chemistry, vol. 278, no. 25, pp. 22546–22554, 2003.
[148]  I. Rodríguez-Crespo, N. C. Gerber, and P. R. Ortiz De Montellano, “Endothelial nitric-oxide synthase: expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation,” The Journal of Biological Chemistry, vol. 271, no. 19, pp. 11462–11467, 1996.
[149]  R. M. F. Wever, T. Van Dam, H. J. M. Van Rijn, F. De Groot, and T. J. Rabelink, “Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase,” Biochemical and Biophysical Research Communications, vol. 237, no. 2, pp. 340–344, 1997.
[150]  F. Cosentino, D. Hürlimann, C. Delli Gatti et al., “Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia,” Heart, vol. 94, no. 4, pp. 487–492, 2008.
[151]  T. Heitzer, C. Brockhoff, B. Mayer et al., “Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers : evidence for a dysfunctional nitric oxide synthase,” Circulation Research, vol. 86, no. 2, pp. E36–E41, 2000.
[152]  M. Pannirselvam, V. Simon, S. Verma, T. Anderson, and C. R. Triggle, “Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice,” British Journal of Pharmacology, vol. 140, no. 4, pp. 701–706, 2003.
[153]  G. M. Pieper, W. Siebeneich, G. Moore-Milton, and A. M. Roza, “Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat,” Diabetologia, vol. 40, no. 8, pp. 910–915, 1997.
[154]  G. M. Pieper, “Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin,” Journal of Cardiovascular Pharmacology, vol. 29, no. 1, pp. 8–15, 1997.
[155]  S. Cai, J. Khoo, and K. M. Channon, “Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells,” Cardiovascular Research, vol. 65, no. 4, pp. 823–831, 2005.
[156]  D. J. Stuehr and O. W. Griffith, “Mammalian nitric oxide synthases,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 65, pp. 287–346, 1992.
[157]  T. Harada, H. Kagamiyama, and K. Hatakeyama, “Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity,” Science, vol. 260, no. 5113, pp. 1507–1510, 1993.
[158]  N. J. Alp, S. Mussa, J. Khoo et al., “Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression,” The Journal of Clinical Investigation, vol. 112, no. 5, pp. 725–735, 2003.
[159]  C. J. Meininger, S. Cai, J. L. Parker et al., “GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats,” The FASEB Journal, vol. 18, no. 15, pp. 1900–1902, 2004.
[160]  M. Ishii, S. Shimizu, T. Nagai, K. Shiota, Y. Kiuchi, and T. Yamamoto, “Stimulation of tetrahydrobiopterin synthesis induced by insulin: possible involvement of phosphatidylinositol 3-kinase,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 1, pp. 65–73, 2001.
[161]  S. Verma, E. Arikawa, L. Yao, I. Laher, and J. H. McNeill, “Preliminary report: insulin-induced vasodilation is dependent on tetrahydrobiopterin synthesis,” Metabolism, vol. 47, no. 9, pp. 1037–1039, 1998.
[162]  O. H. Viveros, C. L. Lee, and M. M. Abou-Donia, “Biopterin cofactor biosynthesis: independent regulation of GTP cyclohyrolase in adrenal medulla and cortex,” Science, vol. 213, no. 4505, pp. 349–350, 1981.
[163]  F. Cosentino, J. E. Barker, M. P. Brand et al., “Reactive oxygen species mediate endothelium-dependent relaxations in Tetrahydrobiopterin-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 496–502, 2001.
[164]  B. M. Mitchell, A. M. Dorrance, and R. C. Webb, “GTP cyclohydrolase 1 downregulation contributes to glucocorticoid hypertension in rats,” Hypertension, vol. 41, no. 3, pp. 669–674, 2003.
[165]  J. S. Zheng, X. Q. Yang, K. J. Lookingland et al., “Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension,” Circulation, vol. 108, no. 10, pp. 1238–1245, 2003.
[166]  M. Okumura, M. Masada, Y. Yoshida et al., “Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type II diabetic rats,” Kidney International, vol. 70, no. 3, pp. 471–476, 2006.
[167]  P. Wenzel, A. Daiber, M. Oelze et al., “Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus,” Atherosclerosis, vol. 198, no. 1, pp. 65–76, 2008.
[168]  J. Xu, Y. Wu, P. Song, M. Zhang, S. Wang, and M. H. Zou, “Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus,” Circulation, vol. 116, no. 8, pp. 944–953, 2007.
[169]  F. Cosentino and T. F. Lüscher, “Endothelial dysfunction in diabetes mellitus,” Journal of Cardiovascular Pharmacology, vol. 32, supplement 3, pp. S54–S61, 1998.
[170]  D. E. Berkowitz, R. White, D. Li et al., “Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated with glyceryl trinitrate,” Circulation, vol. 108, no. 16, pp. 2000–2006, 2003.
[171]  W. H. Kaesemeyer, A. A. Ogonowski, L. Jin, R. B. Caldwell, and R. W. Caldwell, “Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated with glyceryl trinitrate,” British Journal of Pharmacology, vol. 131, no. 5, pp. 1019–1023, 2000.
[172]  T. J. Bivalacqua, W. J. G. Hellstrom, P. J. Kadowitz, and H. C. Champion, “Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction,” Biochemical and Biophysical Research Communications, vol. 283, no. 4, pp. 923–927, 2001.
[173]  C. Zhang, T. W. Hein, W. Wang et al., “Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles,” Hypertension, vol. 44, no. 6, pp. 935–943, 2004.
[174]  M. Jiang, L. Jia, W. Jiang et al., “Protein disregulation in red blood cell membranes of type 2 diabetic patients,” Biochemical and Biophysical Research Communications, vol. 309, no. 1, pp. 196–200, 2003.
[175]  C. Zhang, T. W. Hein, W. Wang, C. I. Chang, and L. Kuo, “Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function,” The FASEB Journal, vol. 15, no. 7, pp. 1264–1266, 2001.
[176]  L. G. Chicoine, M. L. Paffett, T. L. Young, and L. D. Nelin, “Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells,” American Journal of Physiology, vol. 287, no. 1, pp. L60–L68, 2004.
[177]  H. Li, C. J. Meininger, J. R. Hawker Jr. et al., “Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells,” American Journal of Physiology, vol. 280, no. 1, pp. E75–E82, 2001.
[178]  J. S. Bond, M. L. Failla, and D. F. Unger, “Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats,” The Journal of Biological Chemistry, vol. 258, no. 13, pp. 8004–8009, 1983.
[179]  Z. Spolarics and J. S. Bond, “Comparison of biochemical properties of liver arginase from streptozocin-induced diabetic and control mice,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 426–433, 1989.
[180]  L. Hagenfeldt, G. Dahlquist, and B. Persson, “Plasma amino acids in relation to metabolic control in insulin-dependent diabetic children,” Acta Paediatrica Scandinavica, vol. 78, no. 2, pp. 278–282, 1989.
[181]  G. M. Pieper and L. A. Dondlinger, “Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 2, pp. 684–691, 1997.
[182]  H. K?mpfer, J. Pfeilschifter, and S. Frank, “Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair,” Journal of Investigative Dermatology, vol. 121, no. 6, pp. 1544–1551, 2003.
[183]  W. Durante, F. K. Johnson, and R. A. Johnson, “Arginase: a critical regulator of nitric oxide synthesis and vascular function,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 9, pp. 906–911, 2007.
[184]  M. J. Romero, D. H. Platt, H. E. Tawfik et al., “Diabetes-induced coronary vascular dysfunction involves increased arginase activity,” Circulation Research, vol. 102, no. 1, pp. 95–102, 2008.
[185]  J. Gr?nros, C. Jung, J. O. Lundberg, R. Cerrato, C. ?stenson, and J. Pernow, “Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats,” American Journal of Physiology, vol. 300, no. 4, pp. H1174–H1181, 2011.
[186]  A. S. De Vriese, T. J. Verbeuren, J. Van De Voorde, N. H. Lameire, and P. M. Vanhoutte, “Endothelial dysfunction in diabetes,” British Journal of Pharmacology, vol. 130, no. 5, pp. 963–974, 2000.
[187]  H. Kaneda, J. Taguchi, Y. Kuwada et al., “Coronary artery spasm and the polymorphisms of the endothelial nitric oxide synthase gene,” Circulation Journal, vol. 70, no. 4, pp. 409–413, 2006.
[188]  F. J. Miller Jr., K. C. Dellsperger, and D. D. Gutterman, “Pharmacologic activation of the human coronary microcirculation in vitro: endothelium-dependent dilation and differential responses to acetylcholine,” Cardiovascular Research, vol. 38, no. 3, pp. 744–750, 1998.
[189]  T. Beleznai, A. Feher, D. Spielvogel, S. L. Lansman, and Z. Bagi, “Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes,” American Journal of Physiology, vol. 300, no. 3, pp. H777–H783, 2011.
[190]  R. D. Hoeldtke, K. D. Bryner, D. R. McNeill, G. R. Hobbs, and C. Baylis, “Peroxynitrite versus nitric oxide in early diabetes,” American Journal of Hypertension, vol. 16, no. 9, pp. 761–766, 2003.
[191]  W. Kossenjans, A. Eis, R. Sahay, D. Brockman, and L. Myatt, “Role of peroxynitrite in altered fetal-placental vascular reactivity in diabetes or preeclampsia,” American Journal of Physiology, vol. 278, no. 4, pp. H1311–H1319, 2000.
[192]  P. Pacher, L. Liaudet, F. G. Soriano, J. G. Mabley, é. Szabó, and C. Szabó, “The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes,” Diabetes, vol. 51, no. 2, pp. 514–521, 2002.
[193]  P. Pacher and C. Szabo, “Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease,” American Journal of Pathology, vol. 173, no. 1, pp. 2–13, 2008.
[194]  R. C. Thuraisingham, C. A. Nott, S. M. Dodd, and M. M. Yaqoob, “Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy,” Kidney International, vol. 57, no. 5, pp. 1968–1972, 2000.
[195]  C. Szabó, H. Ischiropoulos, and R. Radi, “Peroxynitrite: biochemistry, pathophysiology and development of therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 8, pp. 662–680, 2007.
[196]  W. Chen, L. J. Druhan, C. A. Chen et al., “Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition,” Biochemistry, vol. 49, no. 14, pp. 3129–3137, 2010.
[197]  S. Milstien and Z. Katusic, “Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function,” Biochemical and Biophysical Research Communications, vol. 263, no. 3, pp. 681–684, 1999.
[198]  W. Ehrlich, H. Huser, and H. Kroger, “Inhibition of the induction of collagenase by interleukin-1β in cultured rabbit synovial fibroblasts after treatment with the poly(ADP-ribose)-polymerase inhibitor 3-aminobenzamide,” Rheumatology International, vol. 15, no. 4, pp. 171–172, 1995.
[199]  B. Zingarelli, A. L. Salzman, and C. Szabó, “Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury,” Circulation Research, vol. 83, no. 1, pp. 85–94, 1998.
[200]  C. L. M. Cooke and S. T. Davidge, “Peroxynitrite increases iNOS through NF-κB and decreases prostacyclin synthase in endothelial cells,” American Journal of Physiology, vol. 282, no. 2, pp. C395–C402, 2002.
[201]  R. Nagai, Y. Unno, M. C. Hayashi et al., “Peroxynitrite induces formation of Nε-(carboxymethyl)lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite,” Diabetes, vol. 51, no. 9, pp. 2833–2839, 2002.
[202]  P. Klatt, E. Pineda Molina, D. Pérez-Sala, and S. Lamas, “Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation,” Biochemical Journal, vol. 349, no. 2, pp. 567–578, 2000.
[203]  S. Casagrande, V. Bonetto, M. Fratelli et al., “Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9745–9749, 2002.
[204]  M. Fratelli, H. Demol, M. Puype et al., “Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3505–3510, 2002.
[205]  T. Adachi, R. M. Weisbrod, D. R. Pimentel et al., “S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide,” Nature Medicine, vol. 10, no. 11, pp. 1200–1207, 2004.
[206]  M. Cappiello, P. Amodeo, B. L. Mendez et al., “Modulation of aldose reductase activity through S-thiolation by physiological thiols,” Chemico-Biological Interactions, vol. 130-132, pp. 597–608, 2001.
[207]  S. Li and A. Richard Whorton, “Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols,” Archives of Biochemistry and Biophysics, vol. 410, no. 2, pp. 269–279, 2003.
[208]  D. Giustarini, R. Rossi, A. Milzani, R. Colombo, and I. Dalle-Donne, “S-glutathionylation: from redox regulation of protein functions to human diseases,” Journal of Cellular and Molecular Medicine, vol. 8, no. 2, pp. 201–212, 2004.
[209]  T. Niwa, C. Naito, A. H. M. Mawjood, and K. Imai, “Increased glutathionyl hemoglobin in diabetes mellitus and hyperlipidemia demonstrated by liquid chromatography/electrospray ionization- mass spectrometry,” Clinical Chemistry, vol. 46, no. 1, pp. 82–88, 2000.
[210]  A. C. Maritim, R. A. Sanders, and J. B. Watkins, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003.
[211]  J. A. Vita, B. Frei, M. Holbrook, N. Gokce, C. Leaf, and J. F. Keaney, “L-2-oxothiazolidine-4-carboxylic acid reverses endothelial dysfunction in patients with coronary artery disease,” The Journal of Clinical Investigation, vol. 101, no. 6, pp. 1408–1414, 1998.
[212]  J. J. Mieyal, M. M. Gallogly, S. Qanungo, E. A. Sabens, and M. D. Shelton, “Molecular mechanisms and clinical implications of reversible protein S-glutathionylation,” Antioxidants and Redox Signaling, vol. 10, no. 11, pp. 1941–1988, 2008.
[213]  S. K. Srivastava, K. V. Ramana, and A. Bhatnagar, “Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options,” Endocrine Reviews, vol. 26, no. 3, pp. 380–392, 2005.
[214]  J. M. Petrash, T. M. Harter, C. S. Devine et al., “Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303,” The Journal of Biological Chemistry, vol. 267, no. 34, pp. 24833–24840, 1992.
[215]  M. Cappiello, M. Voltarelli, M. Giannessi et al., “Glutathione dependent modification of bovine lens aldose reductase,” Experimental Eye Research, vol. 58, no. 4, pp. 491–501, 1994.
[216]  A. Chandra, S. Srivastava, J. M. Petrash, A. Bhatnagar, and S. K. Srivastava, “Active site modification of aldose reductase by nitric oxide donors,” Biochimica et Biophysica Acta, vol. 1341, no. 2, pp. 217–222, 1997.
[217]  M. D. Shelton, T. S. Kern, and J. J. Mieyal, “Glutaredoxin regulates nuclear factor κ-B and intercellular adhesion molecule in Müller cells: model of diabetic retinopathy,” The Journal of Biological Chemistry, vol. 282, no. 17, pp. 12467–12474, 2007.
[218]  R. A. Cohen, R. M. Weisbrod, M. Gericke, M. Yaghoubi, C. Bierl, and V. M. Bolotina, “Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx,” Circulation Research, vol. 84, no. 2, pp. 210–219, 1999.
[219]  X. Tong, J. Ying, D. R. Pimentel, M. Trucillo, T. Adachi, and R. A. Cohen, “High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 2, pp. 361–369, 2008.
[220]  E. Duncan, V. Ezzat, and M. Kearney, “Insulin and endothelial function: physiological environment defines effect on atherosclerotic risk,” Current Diabetes Reviews, vol. 2, no. 1, pp. 51–60, 2006.
[221]  N. Clavreul, M. M. Bachschmid, X. Hou et al., “S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2454–2461, 2006.
[222]  P. Song, Y. Wu, J. Xu et al., “Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner,” Circulation, vol. 116, no. 14, pp. 1585–1595, 2007.
[223]  J. Wang, S. Pan, and B. C. Berk, “Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductase-dependent manner,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1283–1288, 2007.
[224]  H. Murata, Y. Ihara, H. Nakamura, J. Yodoi, K. Sumikawa, and T. Kondo, “Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of akt,” The Journal of Biological Chemistry, vol. 278, no. 50, pp. 50226–50233, 2003.
[225]  D. Koya and G. L. King, “Protein kinase C activation and the development of diabetic complications,” Diabetes, vol. 47, no. 6, pp. 859–866, 1998.
[226]  F. Chu, N. E. Ward, and C. A. O'Brian, “Potent inactivation of representative members of each PKC isozyme subfamily and PKD via S-thiolation by the tumor-promotion/progression antagonist glutathione but not by its precursor cysteine,” Carcinogenesis, vol. 22, no. 8, pp. 1221–1229, 2001.
[227]  M. Clarke and P. M. Dodson, “PKC inhibition and diabetic microvascular complications,” Best Practice and Research, vol. 21, no. 4, pp. 573–586, 2007.
[228]  A. Huang, H. Xiao, J. M. Samii, J. A. Vita, and J. F. Keaney, “Contrasting effects of thiol-modulating agents on endothelial NO bioactivity,” American Journal of Physiology, vol. 281, no. 2, pp. C719–C725, 2001.
[229]  V. Martina, G. A. Bruno, E. Zumpano, C. Origlia, L. Quaranta, and G. P. Pescarmona, “Administration of glutathione in patients with type 2 diabetes mellitus increases the platelet constitutive nitric oxide synthase activity and reduces PAI-1,” Journal of Endocrinological Investigation, vol. 24, no. 1, pp. 37–41, 2001.
[230]  D. Ghigo, P. Alessio, A. Foco et al., “Nitric oxide synthesis is impaired in glutathione-depleted human umbilical vein endothelial cells,” The American Journal of Physiology, vol. 265, no. 3, pp. C728–C732, 1993.
[231]  X. Zhang, H. Li, H. Jin, Z. Ebin, S. Brodsky, and M. S. Goligorsky, “Effects of homocysteine on endothelial nitric oxide production,” American Journal of Physiology, vol. 279, no. 4, pp. F671–F678, 2000.
[232]  N. Mukai, T. Akahori, M. Komaki et al., “A comparison of the tube forming potentials of early and late endothelial progenitor cells,” Experimental Cell Research, vol. 314, no. 3, pp. 430–440, 2008.
[233]  G. P. Fadini, I. Baesso, M. Albiero, S. Sartore, C. Agostini, and A. Avogaro, “Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau,” Atherosclerosis, vol. 197, no. 2, pp. 496–503, 2008.
[234]  M. Hristov, W. Erl, and P. C. Weber, “Endothelial progenitor cells: mobilization, differentiation, and homing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1185–1189, 2003.
[235]  C. Urbich and S. Dimmeler, “Endothelial progenitor cells: characterization and role in vascular biology,” Circulation Research, vol. 95, no. 4, pp. 343–353, 2004.
[236]  M. Vasa, S. Fichtlscherer, A. Aicher et al., “Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease,” Circulation Research, vol. 89, no. 1, pp. E1–E7, 2001.
[237]  G. C. Schatteman, H. D. Hanlon, C. Jiao, S. G. Dodds, and B. A. Christy, “Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice,” The Journal of Clinical Investigation, vol. 106, no. 4, pp. 571–578, 2000.
[238]  H. Ding and C. R. Triggle, “Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium,” Vascular Health and Risk Management, vol. 1, no. 1, pp. 55–71, 2005.
[239]  R. Tamarat, J. S. Silvestre, S. Le Ricousse-Roussanne et al., “Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment,” American Journal of Pathology, vol. 164, no. 2, pp. 457–466, 2004.
[240]  N. Werner, S. Kosiol, T. Schiegl et al., “Circulating endothelial progenitor cells and cardiovascular outcomes,” The New England Journal of Medicine, vol. 353, no. 10, pp. 999–1007, 2005.
[241]  C. Schmidt-Lucke, L. R?ssig, S. Fichtlscherer et al., “Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair,” Circulation, vol. 111, no. 22, pp. 2981–2987, 2005.
[242]  T. Imanishi, T. Hano, T. Sawamura, and I. Nishio, “Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 7, pp. 407–413, 2004.
[243]  J. L. Kielczewski, Y. P. R. Jarajapu, E. L. McFarland et al., “Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation,” Circulation Research, vol. 105, no. 9, pp. 897–905, 2009.
[244]  X. M. Feng, B. Zhou, Z. Chen et al., “Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase,” Journal of Lipid Research, vol. 47, no. 6, pp. 1227–1237, 2006.
[245]  H. Reinhard, P. Karl Jacobsen, M. Lajer et al., “Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes,” Diabetologia, vol. 53, no. 10, pp. 2129–2133, 2010.
[246]  S. A. Sorrentino, F. H. Bahlmann, C. Besler et al., “Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone,” Circulation, vol. 116, no. 2, pp. 163–173, 2007.
[247]  T. Thum, D. Fraccarollo, M. Schultheiss et al., “Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes,” Diabetes, vol. 56, no. 3, pp. 666–674, 2007.
[248]  J. Rehman, J. Li, C. M. Orschell, and K. L. March, “Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors,” Circulation, vol. 107, no. 8, pp. 1164–1169, 2003.
[249]  Y. H. Chen, S. J. Lin, F. Y. Lin et al., “High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms,” Diabetes, vol. 56, no. 6, pp. 1559–1568, 2007.
[250]  M. Ii, H. Takenaka, J. Asai et al., “Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury,” Circulation Research, vol. 98, no. 5, pp. 697–704, 2006.
[251]  N. Kr?nkel, V. Adams, A. Linke et al., “Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 4, pp. 698–703, 2005.
[252]  K. Hamano, M. Nishida, K. Hirata et al., “Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease—clinical trial and preliminary results,” Japanese Circulation Journal, vol. 65, no. 9, pp. 845–847, 2001.
[253]  B. E. Strauer, M. Brehm, T. Zeus et al., “Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans,” Circulation, vol. 106, no. 15, pp. 1913–1918, 2002.
[254]  X.-R. Wang, M.-W. Zhang, D.-D. Chen, Y. Zhang, and A. F. Chen, “AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes,” American Journal of Physiology, vol. 300, no. 6, pp. E1135–E1145, 2011.
[255]  S. R. Thom, D. Fisher, J. Zhang et al., “Stimulation of perivascular nitric oxide synthesis by oxygen,” American Journal of Physiology, vol. 284, no. 4, pp. H1230–H1239, 2003.
[256]  L. J. Goldstein, K. A. Gallagher, S. M. Bauer et al., “Endothelial progenitor cell release into circulation is triggered by hyperoxia-induced increases in bone marrow nitric oxide,” Stem Cells, vol. 24, no. 10, pp. 2309–2318, 2006.
[257]  K. A. Gallagher, Z. J. Liu, M. Xiao et al., “Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α,” The Journal of Clinical Investigation, vol. 117, no. 5, pp. 1249–1259, 2007.
[258]  C. R. W. Kuhlmann, C. A. Schaefer, L. Reinhold, H. Tillmanns, and A. Erdogan, “Signalling mechanisms of SDF-induced endothelial cell proliferation and migration,” Biochemical and Biophysical Research Communications, vol. 335, no. 4, pp. 1107–1114, 2005.
[259]  Y. Tan, H. Shao, D. Eton et al., “Stromal cell-derived factor-1 enhances pro-angiogenic effect of granulocyte-colony stimulating factor,” Cardiovascular Research, vol. 73, no. 4, pp. 823–832, 2007.
[260]  C. V. Desouza, F. G. Hamel, K. Bidasee, and K. O'Connell, “Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction,” Diabetes, vol. 60, no. 4, pp. 1286–1294, 2011.
[261]  T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997.
[262]  G. C. Schatteman, M. Dunnwald, and C. Jiao, “Biology of bone marrow-derived endothelial cell precursors,” American Journal of Physiology, vol. 292, no. 1, pp. H1–H18, 2007.
[263]  H. Spring, T. Schüler, B. Arnold, G. J. H?mmerling, and R. Ganss, “Chemokines direct endothelial progenitors into tumor neovessels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18111–18116, 2005.
[264]  S. Brunner, G.-H. Schernthaner, M. Satler et al., “Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data,” Investigative Ophthalmology and Visual Science, vol. 50, no. 1, pp. 392–398, 2009.
[265]  T. Kusuyama, T. Omura, D. Nishiya et al., “Effects of treatment for diabetes mellitus on circulating vascular progenitor cells,” Journal of Pharmacological Sciences, vol. 102, no. 1, pp. 96–102, 2006.
[266]  I. G. Lee, S. L. Chae, and J. C. Kim, “Involvement of circulating endothelial progenitor cells and vasculogenic factors in the pathogenesis of diabetic retinopathy,” Eye, vol. 20, no. 5, pp. 546–552, 2006.
[267]  S. L. Calzi, M. B. Neu, L. C. Shaw, J. L. Kielczewski, N. I. Moldovan, and M. B. Grant, “EPCs and pathological angiogenesis: when good cells go bad,” Microvascular Research, vol. 79, no. 3, pp. 207–216, 2010.
[268]  D. Lyden, K. Hattori, S. Dias et al., “Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth,” Nature Medicine, vol. 7, no. 11, pp. 1194–1201, 2001.
[269]  A. Y. Khakoo and T. Finkel, “Endothelial progenitor cells,” Annual Review of Medicine, vol. 56, pp. 79–101, 2005.
[270]  H. G. Kopp, C. A. Ramos, and S. Rafii, “Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue,” Current Opinion in Hematology, vol. 13, no. 3, pp. 175–181, 2006.
[271]  J. R. Nyengaard and R. Rasch, “The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes,” Diabetologia, vol. 36, no. 3, pp. 189–194, 1993.
[272]  S. Babaei, K. Teichert-Kuliszewska, J. C. Monge, F. Mohamed, M. P. Bendeck, and D. J. Stewart, “Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor,” Circulation Research, vol. 82, no. 9, pp. 1007–1015, 1998.
[273]  A. Papapetropoulos, K. M. Desai, R. D. Rudic et al., “Nitric oxide synthase inhibitors attenuate transforming-growth-factor- β1-stimulated capillary organization in vitro,” American Journal of Pathology, vol. 150, no. 5, pp. 1835–1844, 1997.
[274]  M. Simons, “Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed?” Journal of the American College of Cardiology, vol. 46, no. 5, pp. 835–837, 2005.
[275]  K. Takeuchi, K. Takehara, K. Tajima, S. Kato, and T. Hirata, “Impaired healing of gastric lesions in streptozotocin-induced diabetic rats: effect of basic fibroblast growth factor,” Journal of Pharmacology and Experimental Therapeutics, vol. 281, no. 1, pp. 200–207, 1997.
[276]  A. L. Wong, Z. A. Haroon, S. Werner, M. W. Dewhirst, C. S. Greenberg, and K. G. Peters, “Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues,” Circulation Research, vol. 81, no. 4, pp. 567–574, 1997.
[277]  M. Tanii, Y. Yonemitsu, T. Fujii et al., “Diabetic microangiopathy in ischemic limb is a disease of disturbance of the platelet-derived growth factor-BB/protein kinase C axis but not of impaired expression of angiogenic factors,” Circulation Research, vol. 98, no. 1, pp. 55–62, 2006.
[278]  M. Delamaire, D. Maugendre, M. Moreno, M. C. Le Goff, H. Allannic, and B. Genetet, “Impaired leucocyte functions in diabetic patients,” Diabetic Medicine, vol. 14, no. 1, pp. 29–34, 1997.
[279]  A. Mowat and J. Baum, “Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus,” The New England Journal of Medicine, vol. 284, no. 12, pp. 621–627, 1971.
[280]  J. D. Bagdade, M. Stewart, and E. Walters, “Impaired granulocyte adherence. A reversible defect in host defense in patients with poorly controlled diabetes,” Diabetes, vol. 27, no. 6, pp. 677–681, 1978.
[281]  A. S. Tan, N. Ahmed, and M. V. Berridge, “Acute regulation of glucose transport after activation of human peripheral blood neutrophils by phorbol myristate acetate, fMLP, and granulocyte-macrophage colony-stimulating factor,” Blood, vol. 91, no. 2, pp. 649–655, 1998.
[282]  W. Marhoffer, M. Stein, E. Maeser, and K. Federlin, “Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes,” Diabetes Care, vol. 15, no. 2, pp. 256–260, 1992.
[283]  S. Katz, B. Klein, and I. Elian, “Phagocytotic activity of monocytes from diabetic patients,” Diabetes Care, vol. 6, no. 5, pp. 479–482, 1983.
[284]  J. Yan, G. Tie, B. Park, Y. Yan, P. T. Nowicki, and L. M. Messina, “Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells,” Journal of Vascular Surgery, vol. 50, no. 6, pp. 1412–1422, 2009.
[285]  G. E. Reiber, D. G. Smith, L. Vileikyte et al., “Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings,” Diabetes Care, vol. 22, no. 1, pp. 157–162, 1999.
[286]  M. J. McNeely, E. J. Boyko, J. H. Ahroni et al., “The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration: how great are the risks?” Diabetes Care, vol. 18, no. 2, pp. 216–219, 1995.
[287]  M. A. M. Loots, E. N. Lamme, J. Zeegelaar, J. R. Mekkes, J. D. Bos, and E. Middelkoop, “Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds,” Journal of Investigative Dermatology, vol. 111, no. 5, pp. 850–857, 1998.
[288]  L. Tie, X. J. Li, X. Wang, K. M. Channon, and A. F. Chen, “Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes,” American Journal of Physiology, vol. 296, no. 6, pp. E1423–E1429, 2009.
[289]  D. T. Efron, D. Most, and A. Barbul, “Role of nitric oxide in wound healing,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3, no. 3, pp. 197–204, 2000.
[290]  S. Frank, B. Stallmeyer, H. K?mpfer, N. Kolb, and J. Pfeilschifter, “Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair,” The FASEB Journal, vol. 13, no. 14, pp. 2002–2014, 1999.
[291]  R. D. Galiano, O. M. Tepper, C. R. Pelo et al., “Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells,” American Journal of Pathology, vol. 164, no. 6, pp. 1935–1947, 2004.
[292]  R. Lobmann, A. Ambrosch, G. Schultz, K. Waldmann, S. Schiweck, and H. Lehnert, “Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients,” Diabetologia, vol. 45, no. 7, pp. 1011–1016, 2002.
[293]  K. Maruyama, J. Asai, M. Ii, T. Thorne, D. W. Losordo, and P. A. D'Amore, “Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing,” American Journal of Pathology, vol. 170, no. 4, pp. 1178–1191, 2007.
[294]  A. N. Bessman and F. L. Sapico, “Infections in the diabetic patient: the role of immune dysfunction and pathogen virulence factors,” Journal of Diabetes and Its Complications, vol. 6, no. 4, pp. 258–262, 1992.
[295]  C. M. Nolan, H. N. Beaty, and J. D. Bagdade, “Further characterization of the impaired bactericidal function of granulocytes in patients with poorly controlled diabetes,” Diabetes, vol. 27, no. 9, pp. 889–894, 1978.
[296]  Y. Fang, J. Shen, M. Yao, K. W. Beagley, B. D. Hambly, and S. Bao, “Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines,” British Journal of Dermatology, vol. 162, no. 3, pp. 478–486, 2010.
[297]  W. A. Marston, J. Hanft, P. Norwood, and R. Pollak, “The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial,” Diabetes Care, vol. 26, no. 6, pp. 1701–1705, 2003.
[298]  J. M. Smiell, “Clinical safety of becaplermin (rhPDGF-BB) gel,” American Journal of Surgery, vol. 176, no. 2, pp. 68S–73S, 1998.
[299]  E. Duh and L. P. Aiello, “Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox,” Diabetes, vol. 48, no. 10, pp. 1899–1906, 1999.
[300]  L. P. Aiello and J. S. Wong, “Role of vascular endothelial growth factor in diabetic vascular complications,” Kidney International, Supplement, vol. 58, no. 77, pp. S113–S119, 2000.
[301]  B. Williams, “A potential role angiotensin II-induced vascular endothelial growth factor expression in the pathogenesis of diabetic nephropathy?” Mineral and Electrolyte Metabolism, vol. 24, no. 6, pp. 400–405, 1998.
[302]  M. Simon, H. J. Grone, O. Johren et al., “Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney,” American Journal of Physiology, vol. 268, no. 2, pp. F240–F250, 1995.
[303]  G. S. Schultz and M. B. Grant, “Neovascular growth factors,” Eye, vol. 5, part 2, pp. 170–180, 1991.
[304]  M. Lu, M. Kuroki, S. Amano et al., “Advanced glycation end products increase retinal vascular endothelial growth factor expression,” The Journal of Clinical Investigation, vol. 101, no. 6, pp. 1219–1224, 1998.
[305]  A. M. Joussen, V. Poulaki, N. Mitsiades et al., “Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression,” The FASEB Journal, vol. 16, no. 3, pp. 438–440, 2002.
[306]  G. A. Limb, A. H. Chignell, W. Green, F. LeRoy, and D. C. Dumonde, “Distribution of TNFα and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 80, no. 2, pp. 168–173, 1996.
[307]  J. Adamiec-Mroczek and J. Oficjalska-M?yńczak, “Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes—role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 12, pp. 1665–1670, 2008.
[308]  A. D. Meleth, E. Agrón, C.-C. Chan et al., “Serum inflammatory markers in diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 46, no. 11, pp. 4295–4301, 2005.
[309]  P. Murugeswari, D. Shukla, A. Rajendran, R. Kim, P. Namperumalsamy, and V. Muthukkaruppan, “Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales' disease,” Retina, vol. 28, no. 6, pp. 817–824, 2008.
[310]  O. Barreiro, P. Martín, R. González-Amaro, and F. Sánchez-Madrid, “Molecular cues guiding inflammatory responses,” Cardiovascular Research, vol. 86, no. 2, pp. 174–182, 2010.
[311]  D. S. McLeod, D. J. Lefer, C. Merges, and G. A. Lutty, “Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid,” American Journal of Pathology, vol. 147, no. 3, pp. 642–653, 1995.
[312]  R. J. Tomanek and G. C. Schatteman, “Angiogenesis: new insights and therapeutic potential,” Anatomical Record, vol. 261, no. 3, pp. 126–135, 2000.
[313]  C. J. Avraamides, B. Garmy-Susini, and J. A. Varner, “Integrins in angiogenesis and lymphangiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 604–617, 2008.
[314]  R. P. Casaroli Marano, K. T. Preissner, and S. Vilaró, “Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy,” Experimental Eye Research, vol. 60, no. 1, pp. 5–17, 1995.
[315]  H. P. Hammes, M. Brownlee, A. Jonczyk, A. Sutter, and K. T. Preissner, “Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization,” Nature Medicine, vol. 2, pp. 529–533, 1996.
[316]  K. T. Preissner, S. M. Kanse, and H.-P. Hammes, “Integrin chatter and vascular function in diabetic retinopathy,” Hormone and Metabolic Research, vol. 29, no. 12, pp. 643–645, 1997.
[317]  P. Dandona and A. Aljada, “Endothelial dysfunction in patients with type 2 diabetes and the effects of thiazolidinedione antidiabetic agents,” Journal of Diabetes and Its Complications, vol. 18, no. 2, pp. 91–102, 2004.
[318]  H. A. R. Hadi and J. A. Al Suwaidi, “Endothelial dysfunction in diabetes mellitus,” Vascular Health and Risk Management, vol. 3, no. 6, pp. 853–876, 2007.
[319]  J. P. Cooke, “Therapeutic interventions in endothelial dysfunction: endothelium as a target organ,” Clinical Cardiology, vol. 20, no. 12, pp. II45–II51, 1997.
[320]  K. Mather, S. Verma, and T. Anderson, “Improved endothelial function with metformin in type 2 diabetes mellitus,” Journal of the American College of Cardiology, vol. 37, no. 5, pp. 1344–1350, 2001.
[321]  A. Ceriello, C. Taboga, L. Tonutti et al., “Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment,” Circulation, vol. 106, no. 10, pp. 1211–1218, 2002.
[322]  C. Cheetham, J. Collis, G. O'Driscoll, K. Stanton, R. Taylor, and D. Green, “Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes,” Journal of the American College of Cardiology, vol. 36, no. 5, pp. 1461–1466, 2000.
[323]  T. Heitzer, K. Krohn, S. Albers, and T. Meinertz, “Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus,” Diabetologia, vol. 43, no. 11, pp. 1435–1438, 2000.
[324]  S. Vehkavaara and H. Yki-J?rvinen, “3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 2, pp. 325–330, 2004.
[325]  P. G. Fegan, A. C. Shore, D. Mawson, J. E. Tooke, and K. M. MacLeod, “Microvascular endothelial function in subjects with type 2 diabetes and the effect of lipid-lowering therapy,” Diabetic Medicine, vol. 22, no. 12, pp. 1670–1676, 2005.
[326]  G. P. Littarru, L. Tiano, R. Belardinelli, and G. F. Watts, “Coenzyme Q(10), endothelial function, and cardiovascular disease,” BioFactors, vol. 37, no. 5, pp. 366–373, 2011.
[327]  T. Nystr?m, M. K. Gutniak, Q. Zhang et al., “Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease,” American Journal of Physiology, vol. 287, no. 6, pp. E1209–E1215, 2004.
[328]  C. Rask-Madsen, N. Ihlemann, T. Krarup et al., “Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease,” Diabetes, vol. 50, no. 7–12, pp. 2611–2618, 2001.
[329]  D. Diederich, J. Skopec, A. Diederich, and F. X. Dai, “Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals,” American Journal of Physiology, vol. 266, no. 3, pp. H1153–H1161, 1994.
[330]  P. D. Taylor and L. Poston, “The effect of hyperglycaemia on function of rat isolated mesenteric resistance artery,” British Journal of Pharmacology, vol. 113, no. 3, pp. 801–808, 1994.
[331]  R. Collins, J. Armitage, S. Parish, P. Sleight, and R. Peto, “MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: a randomised placebo-controlled trial,” The Lancet, vol. 360, no. 9326, pp. 23–33, 2002.
[332]  H. Y. Huang, B. Caballero, S. Chang et al., “The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health state-of-the-science conference,” Annals of Internal Medicine, vol. 145, no. 5, pp. 372–385, 2006.
[333]  F. K. Timimi, H. H. Ting, E. A. Haley, M. A. Roddy, P. Ganz, and M. A. Creager, “Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus,” Journal of the American College of Cardiology, vol. 31, no. 3, pp. 552–557, 1998.
[334]  J. R. Koo, Z. Ni, F. Oviesi, and N. D. Vaziri, “Antioxidant therapy potentiates antihypertensive action of insulin in diabetic rats,” Clinical and Experimental Hypertension, vol. 24, no. 5, pp. 333–344, 2002.
[335]  J. A. Beckman, A. B. Goldfine, M. B. Gordon, L. A. Garrett, J. F. Keaney, and M. A. Creager, “Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus,” American Journal of Physiology, vol. 285, no. 6, pp. H2392–H2398, 2003.
[336]  U. Milman, S. Blum, C. Shapira et al., “Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 341–347, 2008.
[337]  R. S. Hundal, M. Krssak, S. Dufour et al., “Mechanism by which metformin reduces glucose production in type 2 diabetes,” Diabetes, vol. 49, no. 12, pp. 2063–2069, 2000.
[338]  Y. D. Kim, K. G. Park, Y. S. Lee et al., “Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP,” Diabetes, vol. 57, no. 2, pp. 306–314, 2008.
[339]  R. Giannarelli, M. Aragona, A. Coppelli, and S. Del Prato, “Reducing insulin resistance with metformin: the evidence today,” Diabetes and Metabolism, vol. 29, no. 4, pp. 6S28–6S35, 2003.
[340]  M. Tiikkainen, A.-M. H?kkinen, E. Korsheninnikova, T. Nyman, S. M?kimattila, and H. Yki-J?rvinen, “Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes,” Diabetes, vol. 53, no. 8, pp. 2169–2176, 2004.
[341]  J. De Jager, A. Kooy, P. Lehert et al., “Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial,” Journal of Internal Medicine, vol. 257, no. 1, pp. 100–109, 2005.
[342]  C. Vitale, G. Mercuro, A. Cornoldi, M. Fini, M. Volterrani, and G. M. C. Rosano, “Metformin improves endothelial function in patients with metabolic syndrome,” Journal of Internal Medicine, vol. 258, no. 3, pp. 250–256, 2005.
[343]  L. G. K. de Aguiar, L. R. Bahia, N. Villela et al., “Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance,” Diabetes Care, vol. 29, no. 5, pp. 1083–1089, 2006.
[344]  A. Natali, S. Baldeweg, E. Toschi et al., “Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes,” Diabetes Care, vol. 27, no. 6, pp. 1349–1357, 2004.
[345]  R. C. Turner, C. A. Cull, V. Frighi, and R. R. Holman, “Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus. Progressive requirement for multiple therapies (UKPDS 49),” JAMA, vol. 281, no. 21, pp. 2005–2012, 1999.
[346]  M. C. Towler and D. G. Hardie, “AMP-activated protein kinase in metabolic control and insulin signaling,” Circulation Research, vol. 100, no. 3, pp. 328–341, 2007.
[347]  G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” The Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001.
[348]  D. G. Hardie, “Ampk and raptor: matching cell growth to energy supply,” Molecular Cell, vol. 30, no. 3, pp. 263–265, 2008.
[349]  E. Schulz, E. Anter, M. H. Zou, and J. F. Keaney, “Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase,” Circulation, vol. 111, no. 25, pp. 3473–3480, 2005.
[350]  B. J. Davis, Z. Xie, B. Viollet, and M. H. Zou, “Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase,” Diabetes, vol. 55, no. 2, pp. 496–505, 2006.
[351]  A. T. Gonon, U. Widegren, A. Bulhak et al., “Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide,” Cardiovascular Research, vol. 78, no. 1, pp. 116–122, 2008.
[352]  A. Gamboa, R. Abraham, A. Diedrich et al., “Role of adenosine and nitric oxide on the mechanisms of action of dipyridamole,” Stroke, vol. 36, no. 10, pp. 2170–2175, 2005.
[353]  A. Gamboa, A. C. Ertl, F. Costa et al., “Blockade of nucleoside transport is required for delivery of intraarterial adenosine into the interstitium: relevance to therapeutic preconditioning in humans,” Circulation, vol. 108, no. 21, pp. 2631–2635, 2003.
[354]  J. P. De La Cruz, A. Moreno, M. Mu?oz, J. M. G. Campos, and F. S. De La Cuesta, “Effect of aspirin plus dipyridamole on the retinal vascular pattern in experimental diabetes mellitus,” Journal of Pharmacology and Experimental Therapeutics, vol. 280, no. 1, pp. 454–459, 1997.
[355]  V. Vallon and H. Osswald, “Dipyridamole prevents diabetes-induced alterations of kidney function in rats,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 349, no. 2, pp. 217–222, 1994.
[356]  E. Picano and C. Michelassi, “Chronic oral dipyridamole as a 'novel' antianginal drug: the collateral hypothesis,” Cardiovascular Research, vol. 33, no. 3, pp. 666–670, 1997.
[357]  J. D. Symons, E. Firoozmand, and J. C. Longhurst, “Repeated dipyridamole administration enhances collateral-dependent flow and regional function during exercise: a role for adenosine,” Circulation Research, vol. 73, no. 3, pp. 503–513, 1993.
[358]  S. E. Farinelli, L. A. Greene, and W. J. Friedman, “Neuroprotective actions of dipyridamole on cultured CNS neurons,” Journal of Neuroscience, vol. 18, no. 14, pp. 5112–5123, 1998.
[359]  G. A. FitzGerald, “Drug therapy: dipyridamole,” The New England Journal of Medicine, vol. 316, no. 20, pp. 1247–1257, 1987.
[360]  E. Picano and M. P. Abbracchio, “European stroke prevention study-2 results: serendipitous demonstration of neuroprotection induced by endogenous adenosine accumulation?” Trends in Pharmacological Sciences, vol. 19, no. 1, pp. 14–16, 1998.
[361]  B. K. Siesj?, C. D. Agardh, and F. Bengtsson, “Free radicals and brain damage,” Cerebrovascular and brain metabolism reviews, vol. 1, no. 3, pp. 165–211, 1989.
[362]  L. Iuliano, A. R. Colavita, C. Camastra et al., “Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole,” British Journal of Pharmacology, vol. 119, no. 7, pp. 1438–1446, 1996.
[363]  G. F. Pedulli, M. Lucarini, E. Marchesi et al., “Medium effects on the antioxidant activity of dipyridamole,” Free Radical Biology and Medicine, vol. 26, no. 3-4, pp. 295–302, 1999.
[364]  P. K. Venkatesh, C. B. Pattillo, B. Branch et al., “Dipyridamole enhances ischaemia-induced arteriogenesis through an endocrine nitrite/nitric oxide-dependent pathway,” Cardiovascular Research, vol. 85, no. 4, pp. 661–670, 2010.
[365]  L. Iuliano, J. Z. Pedersen, G. Rotilio, D. Ferro, and F. Violi, “A potent chain-breaking antioxidant activity of the cardiovascular drug dipyridamole,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 239–247, 1995.
[366]  C. Kusmic, C. Petersen, E. Picano et al., “Antioxidant effect of oral dipyridamole during cerebral hypoperfusion with human carotid endarterectomy,” Journal of Cardiovascular Pharmacology, vol. 36, no. 2, pp. 141–145, 2000.
[367]  E. García-Fuentes, A. Gil-Villarino, M. F. Zafra, and E. García-Peregrín, “Dipyridamole prevents the coconut oil-induced hypercholesterolemia: a study on lipid plasma and lipoprotein composition,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 3, pp. 269–278, 2002.
[368]  C. B. Pattillo, S. C. Bir, B. G. Branch et al., “Dipyridamole reverses peripheral ischemia and induces angiogenesis in the Db/Db diabetic mouse hind-limb model by decreasing oxidative stress,” Free Radical Biology and Medicine, vol. 50, no. 2, pp. 262–269, 2010.
[369]  L. I. Araujo, E. O. McFalls, A. A. Lammertsma, T. Jones, and A. Maseri, “Dipyridamole-induced increased glucose uptake in patients with single-vessel coronary artery disease assessed with PET,” Journal of Nuclear Cardiology, vol. 8, no. 3, pp. 339–346, 2001.
[370]  G. K. McConell and G. D. Wadley, “Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 12, pp. 1488–1492, 2008.
[371]  D. Tousoulis, K. Tsarpalis, D. Cokkinos, and C. Stefanadis, “Effects of insulin resistance on endothelial function: possible mechanisms and clinical implications,” Diabetes, Obesity and Metabolism, vol. 10, no. 10, pp. 834–842, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133