Numerous studies have recently examined the role of pentraxin 3 (PTX3) in clinical situations. The pentraxin family includes C-reactive protein (CRP); however, unlike CRP, PTX3 is expressed predominantly in atherosclerotic lesions that involve macrophages, neutrophils, dendritic cells, or smooth muscle cells. Interestingly, PTX3 gene expression in human endothelial cells is suppressed to a greater extent by pitavastatin than the expression of 6,000 other human genes that have been examined, suggesting that PTX3 may be a novel biomarker for inflammatory cardiovascular disease. The expression and involvement of PTX3 in cardiovascular diseases are discussed in this paper, along with the characteristics of PTX3 that make it a suitable biomarker; namely, that the physiological concentration is known and it is independent of other risk factors. The results discussed in this paper suggest that further investigations into the potential novel use of PTX3 as a biomarker for inflammatory cardiovascular disease should be undertaken. 1. Introduction Biomarkers are measurable and quantifiable biological parameters that can have an important impact on clinical situations. Ideal biomarkers are those that are associated with disease clinical endpoints in observational studies and clinical trials, and in some cases, they may even be used as surrogate endpoints. Biomarkers must also be both independent of established risk factors and recognized to be a factor in the disease for which they are a marker. The normal physiological expression of a potential biomarker must also be known in order to interpret results, as well as to generalize results to various population groups. Finally, potential biomarkers must also have the ability to improve overall prediction beyond that of traditional risk factors, while assays to detect them must have an acceptable cost and be subject to standardization in order to control for the variability of measurements [1]. Basic research over the past decades has identified numerous candidate genes and proteins as biomarkers for cardiovascular disease. In the cardiovascular field, such biomarkers are useful not only for diagnosis but also as indicators of disease trait (risk factor or risk marker), disease state (preclinical or clinical), or disease rate (progression or prognosis) [2]. One protein that has the potential to be a viable biomarker for inflammatory vascular disease is pentraxin 3 (PTX3). 2. Pentraxin 3 PTX3 is an evolutionarily conserved, multimeric acute phase inflammatory glycoprotein in the same family as the well-established
References
[1]
T. A. Pearson, G. A. Mensah, R. W. Alexander et al., “Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association,” Circulation, vol. 107, no. 3, pp. 499–511, 2003.
[2]
R. S. Vasan, “Biomarkers of cardiovascular disease: molecular basis and practical considerations,” Circulation, vol. 113, no. 19, pp. 2335–2362, 2006.
[3]
A. Mantovani, C. Garlanda, and B. Bottazzi, “Pentraxin 3, a non-redundant soluble pattern recognition receptor involved in innate immunity,” Vaccine, vol. 21, supp;ement 2, pp. S43–S47, 2003.
[4]
C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005.
[5]
F. Breviario, E. M. D'Aniello, J. Golay et al., “Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22190–22197, 1992.
[6]
G. W. Lee, A. R. Goodman, T. H. Lee, and J. Vilcek, “Relationship of TSG-14 protein to the pentraxin family of major acute phase proteins,” Journal of Immunology, vol. 153, no. 8, pp. 3700–3707, 1994.
[7]
C. Gustin, E. Delaive, M. Dieu, D. Calay, and M. Raes, “Upregulation of pentraxin-3 in human endothelial cells after lysophosphatidic acid exposure,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 3, pp. 491–497, 2008.
[8]
S. Morikawa, W. Takabe, C. Mataki et al., “Global analysis of RNA expression profile in human vascular cells treated with statins,” Journal of Atherosclerosis and Thrombosis, vol. 11, no. 2, pp. 62–72, 2004.
[9]
V. V. Alles, B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani, “Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes,” Blood, vol. 84, no. 10, pp. 3483–3493, 1994.
[10]
B. Bottazzi, A. Bastone, A. Doni et al., “The long pentraxin PTX3 as a link among innate immunity, inflammation, and female fertility,” Journal of Leukocyte Biology, vol. 79, no. 5, pp. 909–912, 2006.
[11]
A. Doni, G. Peri, M. Chieppa et al., “Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells,” European Journal of Immunology, vol. 33, no. 10, pp. 2886–2893, 2003.
[12]
A. Inforzato, V. Rivieccio, A. P. Morreale et al., “Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization,” Journal of Biological Chemistry, vol. 283, no. 15, pp. 10147–10161, 2008.
[13]
S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007.
[14]
S. Jaillon, P. Jeannin, Y. Hamon et al., “Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages,” Cell Death and Differentiation, vol. 16, no. 3, pp. 465–474, 2009.
[15]
G. Peri, M. Introna, D. Corradi et al., “PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans,” Circulation, vol. 102, no. 6, pp. 636–641, 2000.
[16]
M. Salio, S. Chimenti, N. D. Angelis et al., “Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 117, no. 8, pp. 1055–1064, 2008.
[17]
K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007.
[18]
S. Matsui, J. Ishii, F. Kitagawa et al., “Pentraxin 3 in unstable angina and non-ST-segment elevation myocardial infarction,” Atherosclerosis, vol. 210, no. 1, pp. 220–225, 2010.
[19]
R. Latini, A. P. Maggioni, G. Peri et al., “Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 110, no. 16, pp. 2349–2354, 2004.
[20]
S. Suzuki, Y. Takeishi, T. Niizeki et al., “Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure,” American Heart Journal, vol. 155, no. 1, pp. 75–81, 2008.
[21]
J. Matsubara, S. Sugiyama, T. Nozaki et al., “Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction,” Journal of the American College of Cardiology, vol. 57, no. 7, pp. 861–869, 2011.
[22]
T. Kasai, K. Inoue, T. Kumagai et al., “Plasma pentraxin3 and arterial stiffness in men with obstructive sleep apnea,” The American Journal of Hypertension, 2010.
[23]
Y. Naito, T. Tsujino, H. Akahori et al., “Increase in tissue and circulating pentraxin3 levels in patients with aortic valve stenosis,” American Heart Journal, vol. 160, no. 4, pp. 685–691, 2010.
[24]
G. D. Norata, P. Marchesi, V. K. Pulakazhi Venu et al., “Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis,” Circulation, vol. 120, no. 8, pp. 699–708, 2009.
[25]
K. Yamasaki, M. Kurimura, T. Kasai, M. Sagara, T. Kodama, and K. Inoue, “Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 4, pp. 471–477, 2009.
[26]
A. A. M. Dias, A. R. Goodman, J. L. Dos Santos et al., “TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis,” Journal of Leukocyte Biology, vol. 69, no. 6, pp. 928–936, 2001.
[27]
L. Deban, R. C. Russo, M. Sironi et al., “Regulation of leukocyte recruitment by the long pentraxin PTX3,” Nature Immunology, vol. 11, no. 4, pp. 328–334, 2010.
[28]
N. Maugeri, P. Rovere-Querini, M. Slavich et al., “Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction,” Journal of Immunology, vol. 187, no. 2, pp. 970–979, 2011.
[29]
T. Mauri, A. Coppadoro, G. Bellani et al., “Pentraxin 3 in acute respiratory distress syndrome: an early marker of severity,” Critical Care Medicine, vol. 36, no. 8, pp. 2302–2308, 2008.
[30]
A. Yamashina, H. Tomiyama, K. Takeda et al., “Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement,” Hypertension Research, vol. 25, no. 3, pp. 359–364, 2002.
[31]
M. M. Luchetti, G. Piccinini, A. Mantovani et al., “Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA),” Clinical and Experimental Immunology, vol. 119, no. 1, pp. 196–202, 2000.
[32]
Y. Iwata, A. Yoshizaki, F. Ogawa et al., “Increased serum pentraxin 3 in patients with systemic sclerosis,” Journal of Rheumatology, vol. 36, no. 5, pp. 976–983, 2009.
[33]
F. Fazzini, G. Peri, A. Doni et al., “PTX3 in small-vessel vasculitides: an independent indicator of disease activity produced at sites of inflammation,” Arthritis and Rheumatism, vol. 44, no. 12, pp. 2841–2850, 2001.
[34]
T. Mauri, G. Bellani, N. Patroniti et al., “Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality,” Intensive Care Medicine, vol. 36, no. 4, pp. 621–629, 2010.
[35]
M. I. Yilmaz, A. Sonmez, A. Ortiz et al., “Soluble TWEAK and PTX3 in nondialysis CKD patients: impact on endothelial dysfunction and cardiovascular outcomes,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 4, pp. 785–792, 2011.
[36]
M. Tong, J. J. Carrero, A. R. Qureshi et al., “Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 889–897, 2007.
[37]
S. Kato, M. Ochiai, T. Sakurada et al., “Increased expression of long pentraxin PTX3 in inflammatory bowel diseases,” Digestive Diseases and Sciences, vol. 53, no. 7, pp. 1910–1916, 2008.
[38]
A. S. Savchenko, A. Inoue, R. Ohashi et al., “Long pentraxin 3 (PTX3) expression and release by neutrophils in vitro and in ulcerative colitis,” Pathology International, vol. 61, no. 5, pp. 290–297, 2011.