全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preconception and Contraceptive Care for Women Living with HIV

DOI: 10.1155/2012/604183

Full-Text   Cite this paper   Add to My Lib

Abstract:

Women living with HIV have fertility desires and intentions that are similar to those of uninfected women, and with advances in treatment most women can realistically plan to have and raise children to adulthood. Although HIV may have adverse effects on fertility, recent studies suggest that antiretroviral therapy may increase or restore fertility. Data indicate the increasing numbers of women living with HIV who are becoming pregnant, and that many pregnancies are unintended and contraception is underutilized, reflecting an unmet need for preconception care (PCC). In addition to the PCC appropriate for all women of reproductive age, women living with HIV require comprehensive, specialized care that addresses their unique needs. The goals of PCC for women living with HIV are to prevent unintended pregnancy, optimize maternal health prior to pregnancy, improve maternal and fetal outcomes in pregnancy, prevent perinatal HIV transmission, and prevent HIV transmission to an HIV-uninfected sexual partner when trying to conceive. This paper discusses the rationale for preconception counseling and care in the setting of HIV and reviews current literature relevant to the content and considerations in providing PCC for women living with HIV, with a primary focus on well-resourced settings. 1. Introduction Access to preconception care (PCC) aimed at promoting pregnancy planning, reducing unintended pregnancies, optimizing maternal health prior to pregnancy, and using safer conception strategies is needed to optimize health outcomes for HIV-infected women and their infants, reduce adverse pregnancy outcomes, and strengthen prevention efforts for at-risk partners and children. Benefits of PCC in identifying and modifying risks to maternal health and pregnancy outcomes and in preventing unwanted pregnancies are well documented [1–3]. The American College of Obstetricians and Gynecologists (ACOG) and the Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission in the United States and other national organizations recommend offering all HIV-infected women of childbearing age comprehensive family planning and the opportunity to receive preconception counseling and care as a component of routine primary medical care [2, 4]. This paper will discuss the rationale for preconception counseling and care in the setting of HIV and review current literature relevant to the content and considerations in providing PCC for women living with HIV, with a primary focus on well-resourced settings and on elements of PCC that are specific to women

References

[1]  American College of Obstetricians and Gynecologists (ACOG), “ACOG Committee Opinion number 313, September 2005. The importance of preconception care in the continuum of women's health care,” Obstetrics and Gynecology, vol. 106, no. 3, pp. 665–666.
[2]  American College of Obstetricians Gynecologists (ACOG), “Gynecological care for women with human immunodeficiency virus,” Practice Bulletin, 2010, http://www.acog.org/~/media/Practice%20Bulletins/Committee%20on%20Practice%20Bulletins%20–%20Gynecology/Public/pb117.pdf?dmc=1&ts=20120216T2109570331.
[3]  K. Johnson, S. F. Posner, J. Biermann et al., “Recommendations to improve preconception health and health care—United States. A report of the CDC/ATSDR Preconception Care Work Group and the Select Panel on Preconception Care,” Morbidity and Mortality Weekly Reports. Recommendations and Reports, vol. 55, no. 6, pp. 1–23, 2006.
[4]  Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission, “Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1 Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States,” 2012, http://aidsinfo.nih.gov/guidelines/html/3/perinatal-guidelines/0/.
[5]  A. Van Sighem, L. Gras, P. Reiss, K. Brinkman, and F. De Wolf, “Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals,” AIDS, vol. 24, no. 10, pp. 1527–1535, 2010.
[6]  G. S. Birkhead, W. P. Pulver, B. L. Warren et al., “Progress in prevention of mother-to-child transmission of HIV in New York state: 1988–2008,” Journal of Public Health Management and Practice, vol. 16, no. 6, pp. 481–491, 2010.
[7]  Centers for Disease Control and Prevention (CDC), “HIV Surveillance Report,” 2009, http://www.cdc.gov/hiv/surveillance/resources/reports/2009report/.
[8]  R. Hazra, G. K. Siberry, and L. M. Mofenson, “Growing up with HIV: children, adolescents, and young adults with perinatally acquired HIV infection,” Annual Review of Medicine, vol. 61, pp. 169–185, 2010.
[9]  A. Elgalib, A. Hegazi, A. Samarawickrama et al., “Pregnancy in HIV-infected teenagers in London,” HIV Medicine, vol. 12, no. 2, pp. 118–123, 2011.
[10]  M. Millery, S. Vazquez, V. Walther, N. Humphrey, J. Schlecht, and N. Van Devanter, “Pregnancies in perinatally HIV-infected young women and implications for care and service programs,” Journal of the Association of Nurses in AIDS Care, vol. 23, no. 1, pp. 41–51, 2011.
[11]  A. Sharma, J. G. Feldman, E. T. Golub et al., “Live birth patterns among human immunodeficiency virus-infected women before and after the availability of highly active antiretroviral therapy,” American Journal of Obstetrics and Gynecology, vol. 196, no. 6, pp. e541–e546, 2007.
[12]  L. S. Massad, G. Springer, L. Jacobson et al., “Pregnancy rates and predictors of conception, miscarriage and abortion in US women with HIV,” AIDS, vol. 18, no. 2, pp. 281–286, 2004.
[13]  J. L. Chen, K. A. Phillips, D. E. Kanouse, R. L. Collins, and A. Miu, “Fertility desires and intentions of HIV-positive men and women,” Family Planning Perspectives, vol. 33, no. 4, pp. 144–165, 2001.
[14]  S. Cliffe, C. L. Townsend, M. Cortina-Borja, and M.-L. Newell, “Fertility intentions of HIV-infected women in the United Kingdom,” AIDS Care, vol. 23, no. 9, pp. 1093–1101, 2011.
[15]  S. Finocchario-Kessler, M. D. Sweat, J. K. Dariotis et al., “Understanding high fertility desires and intentions among a sample of urban women living with HIV in the United States,” AIDS and Behavior, vol. 14, no. 5, pp. 1106–1114, 2010.
[16]  M. R. Loutfy, T. A. Hart, S. S. Mohammed et al., “Fertility desires and intentions of HIV-positive women of reproductive age in Ontario, Canada: a cross-sectional study,” PloS ONE, vol. 4, no. 12, p. e7925, 2009.
[17]  S. M. Craft, R. O. Delaney, D. T. Bautista, and J. M. Serovich, “Pregnancy decisions among women with HIV,” AIDS and Behavior, vol. 11, no. 6, pp. 927–935, 2007.
[18]  B. Nattabi, J. Li, S. C. Thompson, C. G. Orach, and J. Earnest, “A systematic review of factors influencing fertility desires and intentions among people living with HIV/AIDS: implications for policy and service delivery,” AIDS and Behavior, vol. 13, no. 5, pp. 949–968, 2009.
[19]  K. E. Squires, S. L. Hodder, J. Feinberg et al., “Health needs of HIV-infected women in the United States: insights from the women living positive survey,” AIDS Patient Care and STDs, vol. 25, no. 5, pp. 279–285, 2011.
[20]  S. Finocchario-Kessler, M. D. Sweat, J. K. Dariotis et al., “Childbearing motivations, pregnancy desires, and perceived partner response to a pregnancy among urban female youth: does HIV-infection status make a difference?” AIDS Care, vol. 24, no. 1, pp. 1–11, 2012.
[21]  L. B. Finer and M. R. Zolna, “Unintended pregnancy in the United States: incidence and disparities, 2006,” Contraception, vol. 84, no. 5, pp. 478–485, 2011.
[22]  K. Kikuchi, N. Wakasugi, K. C. Poudel, K. Sakisaka, and M. Jimba, “High rate of unintended pregnancies after knowing of HIV infection among HIV positive women under antiretroviral treatment in Kigali, Rwanda,” BioScience Trends, vol. 5, no. 6, pp. 255–263, 2011.
[23]  L. J. Koenig, L. Espinoza, K. Hodge, and N. Ruffo, “Young, seropositive, and pregnant: epidemiologic and psychosocial perspectives on pregnant adolescents with human immunodeficiency virus infection,” American Journal of Obstetrics and Gynecology, vol. 197, no. 3, pp. S123–S131, 2007.
[24]  J. Kenny, B. Williams, K. Prime, P. Tookey, and C. Foster, “Pregnancy outcomes in adolescents in the UK and Ireland growing up with HIV,” HIV Medicine, vol. 13, no. 5, pp. 304–308, 2012.
[25]  L. S. Massad, C. T. Evans, T. E. Wilson et al., “Contraceptive use among U.S. women with HIV,” Journal of Women's Health, vol. 16, no. 5, pp. 657–666, 2007.
[26]  S. Finocchario-Kessler, J. K. Dariotis, M. D. Sweat et al., “Do HIV-infected women want to discuss reproductive plans with providers, and are those conversations occurring?” AIDS Patient Care and STDs, vol. 24, no. 5, pp. 317–323, 2010.
[27]  L. Panozzo, M. Battegay, A. Friedl et al., “High risk behaviour and fertility desires among heterosexual HIV-positive patients with a serodiscordant partner—two challenging issues,” Swiss Medical Weekly, vol. 133, no. 7-8, pp. 124–127, 2003.
[28]  M. A. Lampe, D. K. Smith, G. J. E. Anderson, A. E. Edwards, and S. R. Nesheim, “Achieving safe conception in HIV-discordant couples: the potential role of oral preexposure prophylaxis (PrEP) in the United States,” American Journal of Obstetrics and Gynecology, vol. 204, no. 6, pp. 488.e1–488.e8, 2011.
[29]  A. Desgrées du Lo?, P. Msellati, A. Yao et al., “Impaired fertility in HIV-1-infected pregnant women: a clinic-based survey in Abidjan, C?te d'Ivoire, 1997,” AIDS, vol. 13, no. 4, pp. 517–521, 1999.
[30]  J. R. Glynn, A. Buvé, M. Cara?l et al., “Decreased fertility among HIV-1-infected women attending antenatal clinics in three African cities,” Journal of Acquired Immune Deficiency Syndromes, vol. 25, no. 4, pp. 345–352, 2000.
[31]  R. H. Gray, M. J. Wawer, D. Serwadda et al., “Population-based study of fertility in women with HIV-1 infection in Uganda,” The Lancet, vol. 351, no. 9096, pp. 98–103, 1998.
[32]  L. M. Lee, P. M. Wortley, P. L. Fleming, L. J. Eldred, and R. H. Gray, “Duration of human immunodeficiency virus infection and likelihood of giving birth in a medicaid population in Maryland,” American Journal of Epidemiology, vol. 151, no. 10, pp. 1020–1028, 2000.
[33]  R. H. N. Nguyen, S. J. Gange, F. Wabwire-Mangen et al., “Reduced fertility among HIV-infected women associated with viral load in Rakai District, Uganda,” International Journal of STD and AIDS, vol. 17, no. 12, pp. 842–846, 2006.
[34]  S. Cu-Uvin, J. W. Hogan, D. Warren et al., “Prevalence of lower genital tract infections among human immunodeficiency virus (HIV)-seropositive and high-risk HIV-seronegative women,” Clinical Infectious Diseases, vol. 29, no. 5, pp. 1145–1150, 1999.
[35]  S. Cu-Uvin, H. Ko, D. J. Jamieson et al., “Prevalence, incidence, and persistence or recurrence of trichomoniasis among human immunodeficiency virus (HIV)-positive women and among HIV-negative women at high risk for HIV infection,” Clinical Infectious Diseases, vol. 34, no. 10, pp. 1406–1411, 2002.
[36]  C. R. Cohen, “Effect of human immunodeficiency virus type 1 infection upon acute salpingitis: a laparoscopic study,” Journal of Infectious Diseases, vol. 178, no. 5, pp. 1352–1358, 1998.
[37]  K. L. Irwin, A. C. Moorman, M. J. O'Sullivan et al., “Influence of human immunodeficiency virus infection on pelvic inflammatory disease,” Obstetrics and Gynecology, vol. 95, no. 4, pp. 525–534, 2000.
[38]  O. Coll, M. Lopez, R. Vidal et al., “Fertility assessment in non-infertile HIV-infected women and their partners,” Reproductive BioMedicine Online, vol. 14, no. 4, article 2645, pp. 488–494, 2007.
[39]  H. E. Cejtin, A. Kalinowski, P. Bacchetti et al., “Effects of human immunodeficiency virus on protracted amenorrhea and ovarian dysfunction,” Obstetrics and Gynecology, vol. 108, no. 6, pp. 1423–1431, 2006.
[40]  O. C. Ezechi, A. Jogo, C. Gab-Okafor et al., “Effect of HIV-1 infection and increasing immunosuppression on menstrual function,” Journal of Obstetrics and Gynaecology Research, vol. 36, no. 5, pp. 1053–1058, 2010.
[41]  S. D. Harlow, P. Schuman, M. Cohen et al., “Effect of HIV infection on menstrual cycle length,” Journal of Acquired Immune Deficiency Syndromes, vol. 24, no. 1, pp. 68–75, 2000.
[42]  L. S. Massad, C. T. Evans, H. Minkoff et al., “Effects of HIV infection and its treatment on self-reported menstrual abnormalities in women,” Journal of Women's Health, vol. 15, no. 5, pp. 591–598, 2006.
[43]  F. E. Makumbi, G. Nakigozi, S. J. Reynolds, et al., “Associations between HIV antiretroviral therapy and the prevalence and incidence of pregnancy in Rakai, Uganda,” AIDS Research and Treatment, vol. 2011, Article ID 519492, 10 pages, 2011.
[44]  L. Myer, R. J. Carter, M. Katyal, P. Toro, W. M. El-Sadr, and E. J. Abrams, “Impact of antiretroviral therapy on incidence of pregnancy among HIV-infected women in Sub-Saharan Africa: a cohort study,” PLoS Medicine, vol. 7, no. 2, Article ID e1000229, 2010.
[45]  H. Tweya, C. Feldacker, E. Breeze et al., “Incidence of pregnancy among women accessing antiretroviral therapy in Urban Malawi: a retrospective cohort study,” AIDS and Behavior, http://www.springerlink.com.libproxy2.umdnj.edu/content/n82815417n281167/.
[46]  M. Sandelowski, C. Lambe, and J. Barroso, “Stigma in HIV-positive women,” Journal of Nursing Scholarship, vol. 36, no. 2, pp. 122–128, 2004.
[47]  L. B. Sanders, “Sexual behaviors and practices of women living with HIV in relation to pregnancy,” Journal of the Association of Nurses in AIDS Care, vol. 20, no. 1, pp. 62–68, 2009.
[48]  A. C. Wagner, T. A. Hart, S. Mohammed, E. Ivanova, J. Wong, and M. R. Loutfy, “Correlates of HIV stigma in HIV-positive women,” Archives of Women's Mental Health, vol. 13, no. 3, pp. 207–214, 2010.
[49]  S. Richardson, “Guide for HIV/AIDS clinical care of HIV-infected women through the life cycle,” Guide for HIV/AIDS Clinical Care, HRA HIV/AIDS Bureau, 2011.
[50]  S. Kathleen, J. Voss, and D. Li, “Female disclosure of HIV-positive serostatus to sex partners: a two-city study,” Women and Health, vol. 50, no. 6, pp. 506–526, 2010.
[51]  T. E. Wilson, J. Feldman, M. Y. Vega et al., “Acquisition of new sexual partners among women with HIV infection: patterns of disclosure and sexual behavior within new partnerships,” AIDS Education and Prevention, vol. 19, no. 2, pp. 151–159, 2007.
[52]  Panel on Antiretroviral Guidelines for Adults and Adolescents, “Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents,” 2012, http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf.
[53]  C. Jasseron, L. Mandelbrot, C. Dollfus et al., “Non-disclosure of a pregnant Woman's HIV status to her partner is associated with non-optimal prevention of mother-to-child transmission,” AIDS and Behavior, http://www.springerlink.com.libproxy2.umdnj.edu/content/619212838376p285/fulltext.pdf.
[54]  S. Wilson, “HIV and pregnancy: challenges in practice,” Practising Midwife, vol. 14, no. 3, pp. 16–18, 2011.
[55]  K. M. Forbes, N. Lomax, L. Cunningham et al., “Partner notification in pregnant women with HIV: findings from three inner-city clinics,” HIV Medicine, vol. 9, no. 6, pp. 433–435, 2008.
[56]  J. D. Makin, B. W. C. Forsyth, M. J. Visser, K. J. Sikkema, S. Neufeld, and B. Jeffery, “Factors affecting disclosure in South African HIV-positive pregnant women,” AIDS Patient Care and STDs, vol. 22, no. 11, pp. 907–916, 2008.
[57]  T. T. Brown, S. R. Cole, X. Li et al., “Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study,” Archives of Internal Medicine, vol. 165, no. 10, pp. 1179–1184, 2005.
[58]  P. C. Tien, M. F. Schneider, S. R. Cole et al., “Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women's Interagency HIV Study,” AIDS, vol. 21, no. 13, pp. 1739–1745, 2007.
[59]  C. L. Townsend, M. Cortina-Borja, C. S. Peckham, A. De Ruiter, H. Lyall, and P. A. Tookey, “Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000–2006,” AIDS, vol. 22, no. 8, pp. 973–981, 2008.
[60]  R. Tubiana, J. Le Chenadec, C. Rouzioux et al., “Factors associated with mother-to-child transmission of HIV-1 despite a maternal viral load <500 Copies/ ml at Delivery: a case-control study nested in the french perinatal cohort (EPF-ANRS COl),” Clinical Infectious Diseases, vol. 50, no. 4, pp. 585–596, 2010.
[61]  A. P. Kourtis, C. H. Schmid, D. J. Jamieson, and J. Lau, “Use of antiretroviral therapy in pregnant HIV-infected women and the risk of premature delivery: a meta-analysis,” AIDS, vol. 21, no. 5, pp. 607–615, 2007.
[62]  C. Rudin, A. Spaenhauer, O. Keiser et al., “Antiretroviral therapy during pregnancy and premature birth: analysis of Swiss data,” HIV Medicine, vol. 12, no. 4, pp. 228–235, 2011.
[63]  N. Ford, L. Mofenson, K. Kranzer et al., “Safety of efavirenz in first-trimester of pregnancy: a systematic review and meta-analysis of outcomes from observational cohorts,” AIDS, vol. 24, no. 10, pp. 1461–1470, 2010.
[64]  L. F. Johnson and D. A. Lewis, “The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis,” Sexually Transmitted Diseases, vol. 35, no. 11, pp. 946–959, 2008.
[65]  F. A. Plummer, “Heterosexual transmission of human immunodeficiency virus type 1 (HIV): interactions of conventional sexually transmitted diseases, hormonal contraception and HIV-1,” AIDS Research and Human Retroviruses, vol. 14, no. 1, pp. S5–S10, 1998.
[66]  L. J. M. Bollen, S. J. Whitehead, P. A. Mock et al., “Maternal herpes simplex virus type 2 coinfection increases the risk of perinatal HIV transmission: possibility to further decrease transmission?” AIDS, vol. 22, no. 10, pp. 1169–1176, 2008.
[67]  F. Z. Gumbo, K. Duri, G. Q. Kandawasvika et al., “Risk factors of HIV vertical transmission in a cohort of women under a PMTCT program at three peri-urban clinics in a resource-poor setting,” Journal of Perinatology, vol. 30, no. 11, pp. 717–723, 2010.
[68]  M. J. Lee, R. J. Hallmark, L. M. Frenkel, and G. Del Priore, “Maternal syphilis and vertical perinatal transmission of human immunodeficiency virus type-1 infection,” International Journal of Gynecology and Obstetrics, vol. 63, no. 3, pp. 247–252, 1998.
[69]  A. R. Lifson and H. A. Lando, “Smoking and HIV: prevalence, health risks, and cessation strategies,” Current HIV/AIDS Reports, 2012.
[70]  B. King, S. Dube, R. Kaufmann, L. Shaw, and T. Pechacek, “Vital signs: current cigarette smoking among adults aged ≥18?Years—United States, 2005–2010,” Morbidity and Mortality Weekly Report, vol. 60, no. 35, pp. 1207–1212, 2011.
[71]  F. H. Galvan, E. G. Bing, J. A. Fleishman et al., “The prevalence of alcohol consumption and heavy drinking among people with HIV in the United States: results from the HIV cost and services utilization study,” Journal of Studies on Alcohol, vol. 63, no. 2, pp. 179–186, 2002.
[72]  S. C. Kalichman, C. M. Amaral, D. White et al., “Prevalence and clinical implications of interactive toxicity beliefs regarding mixing alcohol and antiretroviral therapies among people living with HIV/AIDS,” AIDS Patient Care and STDs, vol. 23, no. 6, pp. 449–454, 2009.
[73]  J. M. Holmes, K. R. Gerhardstein, and P. T. Griffin, “Brief screening for alcohol use disorders in HIV primary care,” HIV Clinician, vol. 23, no. 4, pp. 8–13, 2011.
[74]  S. C. Kalichman, C. M. Amaral, D. White et al., “Alcohol and adherence to antiretroviral medications: interactive toxicity beliefs among people living with HIV,” Journal of the Association of Nurses in AIDS Care. In press.
[75]  Centers for Disease Control and Prevention, “HIV Surveillance—epidemiology of HIV Infection,” 2010, http://www.cdc.gov/hiv/topics/surveillance/resources/slides/general/index.htm.
[76]  H. E. Hutton, M. E. McCaul, G. Chander et al., “Alcohol use, anal sex, and other risky sexual behaviors among HIV-infected women and men,” AIDS and Behavior, http://www.springerlink.com.libproxy2.umdnj.edu/content/5547552wnjp22833.
[77]  J. M. Sales, J. L. Brown, A. T. Vissman, and R. J. DiClemente, “The association between alcohol use and sexual risk behaviors among African American women across three developmental periods: a review,” Current Drug Abuse Reviews, vol. 5, no. 2, pp. 117–128, 2012.
[78]  P. Seth, G. M. Wingood, R. J. DiClemente, and L. S. Robinson, “Alcohol use as a marker for risky sexual behaviors and biologically confirmed sexually transmitted infections among young adult African-American women,” Women's Health Issues, vol. 21, no. 2, pp. 130–135, 2011.
[79]  S. K. Whitmore, A. W. Taylor, L. Espinoza, R. L. Shouse, M. A. Lampe, and S. Nesheim, “Correlates of mother-to-child transmission of HIV in the United States and Puerto Rico,” Pediatrics, vol. 129, no. 1, pp. e74–e81, 2012.
[80]  Practice Committee of American Society for Reproductive Medicine, “Smoking and infertility,” Fertility and Sterility, vol. 90, no. 5, supplement, pp. S254–S259, 2008.
[81]  B. G. Armstrong, A. D. McDonald, and M. Sloan, “Cigarette, alcohol, and coffee consumption and spontaneous abortion,” American Journal of Public Health, vol. 82, no. 1, pp. 85–87, 1992.
[82]  J. A. Martin, H. C. Kung, T. J. Mathews et al., “Annual summary of vital statistics: 2006,” Pediatrics, vol. 121, no. 4, pp. 788–801, 2008.
[83]  M. H. Aliyu, H. Weldeselasse, E. M. August, L. G. Keith, and H. M. Salihu, “Cigarette smoking and fetal morbidity outcomes in a large cohort of HIV-infected mothers,” Nicotine & Tobacco Research, http://ntr.oxfordjournals.org/content/early/2012/05/09/ntr.nts105.abstract.
[84]  B. J. Dattel, “Substance abuse in pregnancy,” Seminars in Perinatology, vol. 14, no. 2, pp. 179–187, 1990.
[85]  K. Gouin, K. Murphy, and P. S. Shah, “Effects of cocaine use during pregnancy on low birthweight and preterm birth: systematic review and metaanalyses,” American Journal of Obstetrics and Gynecology, vol. 204, no. 4, pp. 340.e1–340.e12, 2011.
[86]  L. Goldschmidt, G. A. Richardson, D. S. Stoffer, D. Geva, and N. L. Day, “Prenatal alcohol exposure and academic achievement at age six: a nonlinear fit,” Alcoholism, vol. 20, no. 4, pp. 763–770, 1996.
[87]  N. J. Bodsworth, D. A. Cooper, and B. Donovan, “The influence of human immunodeficiency virus type 1 infection on the development of the hepatitis B virus carrier state,” Journal of Infectious Diseases, vol. 163, no. 5, pp. 1138–1140, 1991.
[88]  H. H. Thein, Q. Yi, G. J. Dore, and M. D. Krahn, “Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis,” AIDS, vol. 22, no. 15, pp. 1979–1991, 2008.
[89]  C. L. Thio, E. C. Seaberg, R. Skolasky Jr. et al., “HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS),” The Lancet, vol. 360, no. 9349, pp. 1921–1926, 2002.
[90]  J. Y. Phelps, “Restricting access of human immunodeficiency virus (HIV)-seropositive patients to infertility services: a legal analysis of the rights of reproductive endocrinologists and of HIV-seropositive patients,” Fertility and Sterility, vol. 88, no. 6, pp. 1483–1490, 2007.
[91]  P. Barreiro, J. A. Castilla, P. Labarga, and V. Soriano, “Is natural conception a valid option for HIV-serodiscordant couples?” Human Reproduction, vol. 22, no. 9, pp. 2353–2358, 2007.
[92]  S. Attia, M. Egger, M. Müller, M. Zwahlen, and N. Low, “Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis,” AIDS, vol. 23, no. 11, pp. 1397–1404, 2009.
[93]  M. S. Cohen, Y. Q. Chen, M. McCauley et al., “Prevention of HIV-1 infection with early antiretroviral therapy,” The New England Journal of Medicine, vol. 365, no. 6, pp. 493–505, 2011.
[94]  S. Cu-Uvin, A. K. DeLong, K. K. Venkatesh et al., “Genital tract HIV-1 RNA shedding among women with below detectable plasma viral load,” AIDS, vol. 24, no. 16, pp. 2489–2497, 2010.
[95]  A. G. Marcelin, R. Tubiana, S. Lambert-Niclot et al., “Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA in blood plasma,” AIDS, vol. 22, no. 13, pp. 1677–1679, 2008.
[96]  P. M. Sheth, C. Kovacs, K. S. Kemal et al., “Persistent HIV RNA shedding in semen despite effective antiretroviral therapy,” AIDS, vol. 23, no. 15, pp. 2050–2054, 2009.
[97]  S. Taylor and S. Davies, “Antiretroviral drug concentrations in the male and female genital tract: implications for the sexual transmission of HIV,” Current Opinion in HIV and AIDS, vol. 5, no. 4, pp. 335–343, 2010.
[98]  S. Kehl, M. Weigel, D. Müller, M. Gentili, A. Hornemann, and M. Sütterlin, “HIV-infection and modern antiretroviral therapy impair sperm quality,” Archives of Gynecology and Obstetrics, vol. 284, no. 1, pp. 229–233, 2011.
[99]  J. D. M. Nicopoullos, P. A. Almeida, J. W. A. Ramsay, and C. Gilling-Smith, “The effect of human immunodeficiency virus on sperm parameters and the outcome of intrauterine insemination following sperm washing,” Human Reproduction, vol. 19, no. 10, pp. 2289–2297, 2004.
[100]  E. Van Leeuwen, F. W. Wit, S. Repping et al., “Effects of antiretroviral therapy on semen quality,” AIDS, vol. 22, no. 5, pp. 637–642, 2008.
[101]  Q. A. Karim, S. S. A. Karim, J. A. Frohlich et al., “Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women,” Science, vol. 329, no. 5996, pp. 1168–1174, 2010.
[102]  R. M. Grant, J. R. Lama, P. L. Anderson et al., “Preexposure chemoprophylaxis for HIV prevention in men who have sex with men,” The New England Journal of Medicine, vol. 363, no. 27, pp. 2587–2599, 2010.
[103]  N. L. Michael, “Oral preexposure prophylaxis for HIV—another arrow in the quiver,” The New England Journal of Medicine, vol. 363, no. 27, pp. 2663–2665, 2010.
[104]  C. Celum and J. M. Baeten, “Tenofovir-based pre-exposure prophylaxis for HIV prevention: evolving evidence,” Current Opinion in Infectious Diseases, vol. 25, no. 1, pp. 51–57, 2012.
[105]  Committee on Ethics of the American College of Obstetricians and Gynecologists (ACOG), “Human immunodeficiency virus: ethical guidelines for obstetricians and gynecologists. Number 389,” 2007, http://www.acog.org/Resources_And_Publications/Committee_Opinions/Committee_on_Ethics/Human_Immunodeficiency_Virus.
[106]  L. Bujan, L. Hollander, M. Coudert et al., “Safety and efficacy of sperm washing in HIV-1-serodiscordant couples where the male is infected: results from the European CREAThE network,” AIDS, vol. 21, no. 14, pp. 1909–1914, 2007.
[107]  E. S. Daar and J. F. Daar, “Human immunodeficiency virus and fertility care: embarking on a path of knowledge and access,” Fertility and Sterility, vol. 85, no. 2, pp. 298–301, 2006.
[108]  Centers for Disease Control and Prevention (CDC), “U. S. medical eligibility criteria for contraceptive use, 2010,” Morbidity and Mortality Weekly Reports. Recommendations and Reports, vol. 59, no. 4, pp. 1–86, 2010.
[109]  World Health Organization, Medical Eligibility Criteria for Contraceptive Use, WHO, 4th edition, 2009.
[110]  B. A. Richardson, C. S. Morrison, C. Sekadde-Kigondu et al., “Effect of intrauterine device use on cervical shedding of HIV-1 DNA,” AIDS, vol. 13, no. 15, pp. 2091–2097, 1999.
[111]  E. M. Stringer, C. Kaseba, J. Levy et al., “A randomized trial of the intrauterine contraceptive device vs hormonal contraception in women who are infected with the human immunodeficiency virus,” American Journal of Obstetrics and Gynecology, vol. 197, no. 2, pp. 144.e1–144.e8, 2007.
[112]  S. Y. El-Ibiary and J. M. Cocohoba, “Effects of HIV antiretrovirals on the pharmacokinetics of hormonal contraceptives,” European Journal of Contraception and Reproductive Health Care, vol. 13, no. 2, pp. 123–132, 2008.
[113]  M. A. Vogler, K. Patterson, L. Kamemoto et al., “Contraceptive efficacy of oral and transdermal hormones when co-administered with protease inhibitors in HIV-1-infected women: pharmacokinetic results of ACTG trial A5188,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 4, pp. 473–482, 2010.
[114]  S. E. Cohn, J. G. Park, D. H. Watts et al., “Depo-medroxyprogesterone in women on antiretroviral therapy: effective contraception and lack of clinically significant interactions,” Clinical Pharmacology and Therapeutics, vol. 81, no. 2, pp. 222–227, 2007.
[115]  World Health Organization, “Hormonal contraception and HIV: technical Statement,” 2012, http://whqlibdoc.who.int/hq/2012/WHO_RHR_12.08_eng.pdf.
[116]  C. S. Morrison, P. L. Chen, I. Nankya et al., “Hormonal contraceptive use and HIV disease progression among women in Uganda and Zimbabwe,” Journal of Acquired Immune Deficiency Syndromes, vol. 57, no. 2, pp. 157–164, 2011.
[117]  C. B. Polis, M. J. Wawer, N. Kiwanuka et al., “Effect of hormonal contraceptive use on HIV progression in female HIV seroconverters in Rakai, Uganda,” AIDS, vol. 24, no. 12, pp. 1937–1944, 2010.
[118]  E. M. Stringer, M. Giganti, R. J. Carter, W. El-Sadr, E. J. Abrams, and J. S. A. Stringer, “Hormonal contraception and HIV disease progression: a multicountry cohort analysis of the MTCT-Plus Initiative,” AIDS, vol. 23, supplement 1, pp. S69–S77, 2009.
[119]  E. M. Stringer, J. Levy, M. Sinkala et al., “HIV disease progression by hormonal contraceptive method: secondary analysis of a randomized trial,” AIDS, vol. 23, no. 11, pp. 1377–1382, 2009.
[120]  H. E. Cejtin, L. Jacobson, G. Springer et al., “Effect of hormonal contraceptive use on plasma HIV-1-RNA levels among HIV-infected women,” AIDS, vol. 17, no. 11, pp. 1702–1704, 2003.
[121]  B. A. Richardson, P. A. Otieno, D. Mbori-Ngacha, J. Overbaugh, C. Farquhar, and G. C. John-Stewart, “Hormonal contraception and HIV-1 disease progression among postpartum Kenyan women,” AIDS, vol. 21, no. 6, pp. 749–753, 2007.
[122]  J. M. Baeten, S. Benki, V. Chohan et al., “Hormonal contraceptive use, herpes simplex virus infection, and risk of HIV-1 acquisition among Kenyan women,” AIDS, vol. 21, no. 13, pp. 1771–1777, 2007.
[123]  L. Lavreys, V. Chohan, J. Overbaugh et al., “Hormonal contraception and risk of cervical infections among HIV-1-seropositive Kenyan women,” AIDS, vol. 18, no. 16, pp. 2179–2184, 2004.
[124]  C. S. Morrison, P. L. Chen, C. Kwok et al., “Hormonal contraception and HIV acquisition: reanalysis using marginal structural modeling,” AIDS, vol. 24, no. 11, pp. 1778–1781, 2010.
[125]  R. Heffron, D. Donnell, H. Rees et al., “Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study,” The Lancet Infectious Diseases, vol. 12, no. 1, pp. 19–26, 2012.
[126]  C. A. Blish and J. M. Baeten, “Hormonal Contraception and HIV-1 Transmission,” American Journal of Reproductive Immunology, vol. 65, no. 3, pp. 302–307, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133