全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rapid Diagnosis of Pulmonary and Extrapulmonary Tuberculosis in HIV-Infected Patients. Comparison of LED Fluorescent Microscopy and the GeneXpert MTB/RIF Assay in a District Hospital in India

DOI: 10.1155/2012/932862

Full-Text   Cite this paper   Add to My Lib

Abstract:

HIV-related tuberculosis is difficult to diagnose and is associated with high morbidity and mortality. Recently, the World Health Organization has endorsed the GeneXpert MTB/RIF (Xpert) assay for the diagnosis of pulmonary tuberculosis in HIV-infected patients from developing countries, but information about the use of Xpert for the diagnosis of extrapulmonary tuberculosis is scarce. In this study, we compared the performance of light-emitting diode (LED) auramine fluorescent microscopy and the Xpert assay for the diagnosis of tuberculosis in HIV infected patients in a district hospital of India. Although at higher cost, Xpert outperformed LED fluorescent microscopy in all type of specimens, especially in cerebrospinal fluid where the number of positive results was increased 11 times. Pleural fluid, ascitic fluid, pus, and stool specimens also yielded positive results with the Xpert assay. When collecting two additional early-morning sputum samples, the increase of the number of positive results with the Xpert assay was lower than previously reported for HIV infected patients. Rifampicin resistance was observed in 2.2% of the cases. The results of this study show that the Xpert assay can dramatically improve the rapid diagnosis of tuberculous meningitis and other types of extrapulmonary tuberculosis of HIV infected patients. 1. Introduction In 2010, there were 350,000 tuberculosis-related deaths in HIV-infected people, most of them in developing countries [1]. One of the most important reasons for this high number of deaths is the difficulty of diagnosing tuberculosis in the HIV population [2, 3]. There is an urgent need for implementing new diagnostic methods for tuberculosis in resource-limited setting with high HIV prevalence. Microbiological identification of Mycobacterium tuberculosis from cultures is the gold standard for diagnosing tuberculosis infection. However, culture of mycobacteria is not able to provide a rapid diagnosis for the clinical management of severe cases and requires expensive and sophisticated laboratory facilities that cannot be afforded in most of resource-limited settings. The World Health Organization (WHO) has recently endorsed the implementation of light-emitting diode (LED) fluorescent microscopy and the GeneXpert MTB/RIF assay for national tuberculosis programmes in developing countries [4, 5]. LED fluorescent microscopy is less expensive than the conventional fluorescence microscopy, has been shown 84% sensitivity (95% confidence interval [CI], 76 to 89) and 98% specificity (95% CI, 85 to 97) against culture as the

References

[1]  World Health Organization, Global Tuberculosis Control, World Health Organization, 2011.
[2]  E. L. Corbett, C. J. Watt, N. Walker et al., “The growing burden of tuberculosis: global trends and interactions with the HIV epidemic,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1009–1021, 2003.
[3]  H. Getahun, M. Harrington, R. O'Brien, and P. Nunn, “Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes,” The Lancet, vol. 369, no. 9578, pp. 2042–2049, 2007.
[4]  World Health Organization, Rapid Implementation of the Xpert MTB/RIF Diagnostic Test, World Health Organization, 2011.
[5]  World Health Organization, Fluorescent Light-Emitting Diode (LED) Microscopy for Diagnosis of Tuberculosis, World Health Organization, 2011.
[6]  B. J. Marais, W. Brittle, K. Painczyk et al., “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clinical Infectious Diseases, vol. 47, no. 2, pp. 203–207, 2008.
[7]  World Health Organization, “Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and Rifampicin resistance: Xpert MTB/RIF system,” Policy Statement, 2011.
[8]  N. Kingkaew, B. Sangtong, W. Amnuaiphon et al., “HIV-associated extrapulmonary tuberculosis in Thailand: epidemiology and risk factors for death,” International Journal of Infectious Diseases, vol. 13, no. 6, pp. 722–729, 2009.
[9]  G. Alvarez-Uria, M. Midde, R. Pakam, and P. K. Naik, “Gender differences, routes of transmission, socio-demographic characteristics and prevalence of HIV related infections of adults and children in an HIV cohort from a rural district of India,” Infectious Disease Reports, vol. 4, no. 2, article e19, 2012.
[10]  World Health Organization, Reduction of Number of Smears for the Diagnosis of Pulmonary TB, World Health Organization, 2007.
[11]  World Health Organization, Standard operating procedure for auramine staining, Module 27.
[12]  D. Helb, M. Jones, E. Story et al., “Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology,” Journal of Clinical Microbiology, vol. 48, no. 1, pp. 229–237, 2010.
[13]  V. Vadwai, C. Boehme, P. Nabeta, A. Shetty, D. Alland, and C. Rodrigues, “Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis?” Journal of Clinical Microbiology, vol. 49, no. 7, pp. 2540–2545, 2011.
[14]  J. E. Kaplan, C. Benson, K. H. Holmes, J. T. Brooks, A. Pau, and H. Masur, “Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV medicine association of the infectious diseases society of America,” Morbidity and Mortality Weekly Report, Recommendations and Reports, vol. 58, no. 4, pp. 1–207, 2009.
[15]  P. M. Small and M. Pai, “Tuberculosis diagnosis—time for a game change,” The New England Journal of Medicine, vol. 363, no. 11, pp. 1070–1071, 2010.
[16]  M. P. Golden and H. R. Vikram, “Extrapulmonary tuberculosis: an overview,” American Family Physician, vol. 72, no. 9, pp. 1761–1768, 2005.
[17]  L. M. Parsons, A. Somosk?vi, C. Gutierrez et al., “Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities,” Clinical Microbiology Reviews, vol. 24, no. 2, pp. 314–350, 2011.
[18]  G. Thwaites, M. Fisher, C. Hemingway, G. Scott, T. Solomon, and J. Innes, “British infection society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children,” Journal of Infection, vol. 59, no. 3, pp. 167–187, 2009.
[19]  C. Whalen, C. R. Horsburgh Jr., D. Hom, C. Lahart, M. Simberkoff, and J. Ellner, “Site of disease and opportunistic infection predict survival in HIV-assosiated truberculosis,” AIDS, vol. 11, no. 4, pp. 455–460, 1997.
[20]  E. V. Kourbatova, M. K. Leonard Jr., J. Romero, C. Kraft, C. del Rio, and H. M. Blumberg, “Risk factors for mortality among patients with extrapulmonary tuberculosis at an academic inner-city hospital in the US,” European Journal of Epidemiology, vol. 21, no. 9, pp. 715–721, 2006.
[21]  L. Lawson, M. A. Yassin, A. Ramsay, N. E. Emenyonu, S. B. Squire, and L. E. Cuevas, “Comparison of scanty AFB smears against culture in an area with high HIV prevalence,” International Journal of Tuberculosis and Lung Disease, vol. 9, no. 8, pp. 933–935, 2005.
[22]  A. van Deun, A. H. Salim, E. Cooreman et al., “Scanty AFB smears: what's in a name?” International Journal of Tuberculosis and Lung Disease, vol. 8, no. 7, pp. 816–823, 2004.
[23]  E. Tortoli, C. Russo, C. Piersimoni et al., “Clinical validation of Xpert MTB/RIF for the diagnosis of extrapulmonary tuberculosis,” European Respiratory Journal, vol. 40, no. 2, pp. 442–447, 2012.
[24]  S. D. Lawn, S. V. Brooks, K. Kranzer et al., “Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study,” PLoS Medicine, vol. 8, no. 7, Article ID e1001067, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413