全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Use of Interferon Gamma Release Assays in the Diagnosis of Active Tuberculosis

DOI: 10.1155/2012/768723

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interferon gamma release assays (IGRAs) are in vitro immunologic diagnostic tests used to identify Mycobacterium tuberculosis infection. They cannot differentiate between latent and active infections. The cutoff suggested by the manufacturer is 0.35?IU/mL for latent tuberculosis. As IGRA tests were recently approved for the differential diagnosis of active tuberculosis, we assessed the diagnostic accuracy of the latest generation IGRA for detection of active tuberculosis in a low-incidence area in Germany. Our consecutive case series includes 61 HIV negative, Mycobacterium tuberculosis culture positive patients, as well as 234 control patients. The retrospective analysis was performed over a period of two years. In 11/61 patients with active tuberculosis (18.0%) the test result was <0.35?IU/mL, resulting in a sensitivity of 0.82. We recommend establishing a new cut-off value for the differential diagnosis of active tuberculosis assessed by prospective clinical studies and in various regions with high and low prevalence of tuberculosis. 1. Introduction Tuberculosis (TB) remains a major public health problem affecting one-third of the world’s population [1, 2]. Diagnosis of TB is usually based on a combination of anamnestic symptoms, clinical presentation, radiological and pathological changes, bacteriological findings of acid/alcohol-fast bacilli, and molecular tests [3]. Definitive TB diagnosis is based on the detection of Mycobacterium tuberculosis (MTB) in the culture, which usually takes four to six weeks. For decades, tuberculin skin test (TST) has been used as diagnostic tool to support the physician’s decision process. With the introduction of interferon gamma release assays (IGRAs), a more specific method became available. Although primarily developed for the diagnosis of latent TB, clinicians have also been searching for improved diagnostic tools and explored IGRAs for the immunodiagnosis of active TB. In 2010, the Centers for Disease Control and Prevention (CDC) updated their guidelines for testing for TB infection, concluding that IGRAs “may be used instead of a tuberculin skin test in all situations in which the CDC recommends the tuberculin skin test as an aid in diagnosing M. tuberculosis infection” [4, 5]. Nevertheless, with the cutoff for the diagnosis of latent TB as given by the producers, pooled sensitivity for the diagnosis of culture positive TB did not exceed 80% in the most recent meta-analyses [6, 7]. The present case series constitutes one of the largest reports of latest generation IGRA used in culturally proven HIV-negative TB

References

[1]  C. Dye, et al., “Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project,” the Journal of the American Medical Association, vol. 282, no. 7, pp. 677–686, 1999.
[2]  World Health Organization, “Tuberculosis,” 2011, http://www.who.int/mediacentre/factsheets/fs104/en/.
[3]  World Health Organization, “Treatment of tuberculosis: guidelines for national programmes,” WHO/CDS/TB/2003.313, Geneva, Switzerland, 2003.
[4]  G. H. Mazurek, J. Jereb, A. Vernon, P. LoBue, S. Goldberg, and K. Castros, “Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection—United States, 2010,” Morbidity and Mortality Weekly Report, vol. 59, no. RR-5, pp. 1–25, 2010.
[5]  L. Barclay, “CDC issues updated guidelines for testing for tuberculosis infection,” http://www.medscape.com/viewarticle/724390.
[6]  M. Sester, G. Sotgiu, C. Lange et al., “Interferon-γ release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis,” European Respiratory Journal, vol. 37, no. 1, pp. 100–111, 2011.
[7]  J. Z. Metcalfe, C. K. Everett, K. R. Steingart et al., “Interferon-γ release assays for active pulmonary tuberculosis diagnosis in adults in low-and middle-income countries: systematic review and meta-analysis,” Journal of Infectious Diseases, vol. 204, supplement 4, pp. S1120–S1129, 2011.
[8]  B. Kampmann, E. Whittaker, A. Williams et al., “Interferon-γ release assays do not identify more children with active tuberculosis than the tuberculin skin test,” European Respiratory Journal, vol. 33, no. 6, pp. 1374–1382, 2009.
[9]  E. D. Roberts, E. W. Koneman, and Y. K. Kim, “Mycobacterium,” in Manual of Clinical Microbiology, H. W. J. J. Balows, K. L. Herrmann, H. D. Isenberg, and H. J. Shadomy, Eds., pp. 304–339, Washington, DC, USA, 1991.
[10]  P. T. Kent and G. P. Kubica, Public Health Mycobacteriology—A Guide for the Level III Laboratory, vol. 86, U. S. Department of Health and Human Services Publication (CDC), 1985.
[11]  V. V. Levy-Frebault and F. Portaels, “Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species,” International Journal of Systematic Bacteriology, vol. 42, no. 2, pp. 315–323, 1992.
[12]  A. K. Detjen, T. Keil, S. Roll et al., “Interferon-γ release assays improve the diagnosis of tuberculosis and nontuberculous mycobacterial disease in children in a country with a low incidence of tuberculosis,” Clinical Infectious Diseases, vol. 45, no. 3, pp. 322–328, 2007.
[13]  L. Bianchi, L. Galli, M. Moriondo et al., “Interferon-gamma release assay improves the diagnosis of tuberculosis in children,” Pediatric Infectious Disease Journal, vol. 28, no. 6, pp. 510–514, 2009.
[14]  V. Bartu, M. Havelkova, and E. Kopecka, “QuantiFERON-TB gold in the diagnosis of active tuberculosis,” Journal of International Medical Research, vol. 36, no. 3, pp. 434–437, 2008.
[15]  C. M. Denkinger, K. Dheda, and M. Pai, “Guidelines on interferon-γ release assays for tuberculosis infection: concordance, discordance or confusion?” Clinical Microbiology and Infection, vol. 17, no. 6, pp. 806–814, 2011.
[16]  R. Diel, R. Loaddenkemper, and A. Nienhaus, “Evidence-based comparison of commercial Interferon-γ Release assays for detecting active TB a metaanalysis,” Chest, vol. 137, no. 4, pp. 952–968, 2010.
[17]  M. Pai, A. Zwerling, and D. Menzies, “Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update,” Annals of Internal Medicine, vol. 149, no. 3, pp. 177–184, 2008.
[18]  R. Palazzo, F. Spensieri, M. Massari et al., “Use of whole-blood samples in in-house bulk and single-cell antigen-specific gamma interferon assays for surveillance of Mycobacterium tuberculosis infections,” Clinical and Vaccine Immunology, vol. 15, no. 2, pp. 327–337, 2008.
[19]  K. Baba, S. S?rnes, A. A. Hoosen et al., “Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON TB-Gold interferon-gamma assay,” BMC Infectious Diseases, vol. 8, article no. 35, 2008.
[20]  I. Sauzullo, F. Mengoni, M. Lichtner et al., “In vivo and in vitro effects of antituberculosis treatment on mycobacterial interferon-γ T cell response,” PLoS One, vol. 4, no. 4, Article ID e5187, 2009.
[21]  Robert Koch Institut, “RKI-Bericht zur epidemiologie der tuberkulose in deutschland für 2009,” 2011; http://www.rki.de/cln_178/nn_274324/DE/Content/InfAZ/T/Tuberkulose/Download/TB2009.html.
[22]  A. L. Davidow, “Interferon-gamma release assay test characteristics depend upon the prevalence of active tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 11, pp. 1411–1415, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133