全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Overnight Pooled and Standard Sputum Collection Method for Patients with Suspected Pulmonary Tuberculosis in Northern Tanzania

DOI: 10.1155/2012/128057

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Tanzania sputum culture for tuberculosis (TB) is resource intensive and available only at zonal facilities. In this study overnight pooled sputum collection technique was compared with standard spot morning collection among pulmonary TB suspects at Kibong'oto National TB Hospital in Tanzania. A spot sputum specimen performed at enrollment, an overnight pooled sputum, and single morning specimen were collected from 50 subjects and analyzed for quality, quantity, and time to detection in Bactec MGIT system. Forty-six (92%) subjects' overnight pooled specimens had a volume ≥5?mls compared to 37 (37%) for the combination of spot and single morning specimens ( ). Median time to detection was 96 hours (IQR 87–131) for the overnight pooled specimens compared to 110.5 hours (IQR is 137 right 137–180) for the combination of both spot and single morning specimens ( ). In our setting of limited TB culture capacity, we recommend a single pooled sputum to maximize yield and speed time to diagnosis. 1. Background Tuberculosis (TB) and HIV are among the global leaders in infectious disease mortality [1]. Sub-Saharan Africa has one of the highest burdens of TB and HIV coinfection [2]. Prompt diagnosis of TB is critical to improve outcome, but diagnosis of TB is challenging in HIV-infected patients and especially in resource-limited settings [3]. HIV-infected patients have a higher rate of extrapulmonary TB, atypical chest radiographs and fewer pulmonary cavities [4–6]. As a consequence, HIV patients may be more likely to have a negative or paucibacillary sputum smear microscopy [7]. Subjects with paucibacillary specimens may be prone to being delayed in clinical diagnosis, either because acid-fast bacilli are not observed by microscopy or time to detection Mycobacterium tuberculosis (MTB) culture is prolonged [8]. Both poor quality and low quantity of sputum have a significant impact on TB detection rate [9, 10]. In settings reliant on smear microscopy as the only means of TB diagnosis, this may impact negatively the time to initiation of TB treatment. Ideal specimens should contain 5?mL or more of sputum without saliva. A previous study found that the quality and quantity of sputum were improved by pooling three versus a single “spot” collection [11]. However, collection on multiple days may unnecessarily burden health facilities and may be prone to contamination. In contrast, a single overnight pooled technique whereby a patient is given a sealable container in which to collect all expectorated sputum over the course of the night has been used in TB treatment

References

[1]  D. Maher, A. Harries, and H. Getahun, “Tuberculosis and HIV interaction in sub-Saharan Africa: impact on patients and programmes; implications for policies,” Tropical Medicine and International Health, vol. 10, no. 8, pp. 734–742, 2005.
[2]  C. Dye, S. Scheele, P. Dolin, V. Pathania, M. C. Raviglione, and The WHO Global Surveillance and Monitoring Project, Global Burden of Tuberculosis, “Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country,” Journal of the American Medical Association, vol. 282, no. 7, pp. 677–686, 1999.
[3]  M. J. Reid and N. S. Shah, “Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings,” The Lancet Infectious Diseases, vol. 9, no. 3, pp. 173–184, 2009.
[4]  S. Shenoi, S. Heysell, A. Moll, and G. Friedland, “Multidrug-resistant and extensively drug-resistant tuberculosis: consequences for the global HIV community,” Current Opinion in Infectious Diseases, vol. 22, no. 1, pp. 11–17, 2009.
[5]  A. M. Elliott, K. Namaambo, B. W. Allen et al., “Negative sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka, Zambia,” Tubercle and Lung Disease, vol. 74, no. 3, pp. 191–194, 1993.
[6]  D. C. Perlman, W. M. El-Sadr, E. T. Nelson et al., “Variation of chest radiographic patterns in pulmonary tuberculosis by degree of human immunodeficiency virus-related immunosuppression. The Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA). The AIDS Clinical Trials Group (ACTG),” Clinical Infectious Diseases, vol. 25, no. 2, pp. 242–246, 1997.
[7]  A. D. Harries, H. T. Banda, M. J. Boeree et al., “Management of pulmonary tuberculosis suspects with negative sputum smears and normal or minimally abnormal chest radiographs in resource-poor settings,” International Journal of Tuberculosis and Lung Disease, vol. 2, no. 12, pp. 999–1004, 1998.
[8]  G. S. Kibiki, B. Mulder, D. van Ven et al., “Laboratory diagnosis of pulmonary tuberculosis in TB and HIV endemic settings and the contribution of real time PCR for M. tuberculosis in bronchoalveolar lavage fluid,” Tropical Medicine and International Health, vol. 12, no. 10, pp. 1210–1217, 2007.
[9]  P. Daley, A. Latha, Suzana S., et al., “Risk factors associated with poor quality sputum submission in India,” International Journal of Antimicrobial Agents, vol. 34, p. S17, 2009.
[10]  M. S. Khan, O. Dar, C. Sismanidis, K. Shah, and P. Godfrey-Faussett, “Improvement of tuberculosis case detection and reduction of discrepancies between men and women by simple sputum-submission instructions: a pragmatic randomised controlled trial,” Lancet, vol. 369, no. 9577, pp. 1955–1960, 2007.
[11]  Y. Merid, M. A. Yassin, L. Yamuah, R. Kumar, H. Engers, and A. Aseffa, “Validation of bleach-treated smears for the diagnosis of pulmonary tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 1, pp. 136–141, 2009.
[12]  R. Brindle, J. Odhiambo, and D. Mitchison, “Serial counts of Mycobacterium tuberculosis in sputum as surrogate markers of the sterilising activity of rifampicin and pyrazinamide in treating pulmonary tuberculosis,” BMC Pulmonary Medicine, vol. 1, article 2, 2001.
[13]  A. Jindani, C. J. Doré, and D. A. Mitchison, “Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 10, pp. 1348–1354, 2003.
[14]  A. H. Diacon, J. S. Maritz, A. Venter et al., “Time to detection of the growth of Mycobacterium tuberculosis in MGIT 960 for determining the early bactericidal activity of antituberculosis agents,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, pp. 1561–1565, 2010.
[15]  C. Pheiffer, N. M. Carroll, N. Beyers et al., “Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 7, pp. 792–798, 2008.
[16]  N. R. Gandhi, N. S. Shah, J. R. Andrews et al., “HIV coinfection in multidrug- and extensively drug-resistant tuberculosis results in high early mortality,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 1, pp. 80–86, 2010.
[17]  M. Barnard, H. Albert, G. Coetzee, R. O'Brien, and M. E. Bosman, “Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 7, pp. 787–792, 2008.
[18]  D. Helb, M. Jones, E. Story et al., “Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology,” Journal of Clinical Microbiology, vol. 48, no. 1, pp. 229–237, 2010.
[19]  B. Alisjahbana, C. R. Van, H. Danusantoso et al., “Better patient instruction for sputum sampling can improve microscopic tuberculosis diagnosis,” International Journal of Tuberculosis and Lung Disease, vol. 9, no. 7, pp. 814–817, 2005.
[20]  J. R. Warren, M. O. N. D. Bhattacharya, K. N. F. de Almeida, K. A. T. H. Trakas, and L. R. Peterson, “A minimum 5.0 ml of sputum improves the sensitivity of acid-fast smear for Mycobacterium tuberculosis,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1559–1562, 2000.
[21]  D. Gothi and J. M. Joshi, “Clinical and laboratory observations of tuberculosis at a Mumbai (India) clinic,” Postgraduate Medical Journal, vol. 80, no. 940, pp. 97–100, 2004.
[22]  M. Muyoyeta, J. A. Schaap, H. P. De et al., “Comparison of four culture systems for Mycobacterium tuberculosis in the zambian national reference laboratory,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 4, pp. 460–465, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133