全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimated Prevalence of Caprine Paratuberculosis in Boer Goat Herds in Missouri, USA

DOI: 10.1155/2012/674085

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this study was to estimate true animal-level and herd-level prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) antibodies in Missouri Boer goat herds. Sera harvested from blood samples collected from goats ≥24 months of age in 25 Missouri Boer goat herds were tested for presence of MAP antibodies using a commercial ELISA kit. Herds were declared positive for MAP if one or more goats in the herd tested positive for MAP antibodies. True animal, within-herd, and between-herd prevalences were calculated using the Rogan-Gladen estimator and were 1.4% (95% CI = 0.1 to 3.6%), 3% (95% CI = 0 to 6%), and 54.7% (95% CI = 28.2 to 86.2%), respectively. Findings in this study confirmed that MAP infection is endemic in Missouri Boer goat herds. 1. Introduction Paratuberculosis (PTB) is a progressive, debilitating, and production limiting disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Paratuberculosis is recognized worldwide as one of the most economically important food animal diseases affecting cattle, sheep, and goats. Recognized herd losses attributable to PTB include increased mortality and premature culling risks, lower reproductive efficiency, compromised growth rates, and decreased milk yield [1–4]. Although MAP’s zoonotic potential is a subject of debate, [5, 6] the organism’s ability to contaminate milk [7] plus its frequent detection in patients with Crohn’s disease [8, 9] raises concern for a potential public health hazard. Even though goats are considered a minor species in the US, the goat industry is recognized as one of the fastest growing US livestock sectors [10]. However, caprine PTB has not received much attention in the US compared with the degree of attention that bovine PTB has received in recent years. No studies have been conducted to provide valid estimates of prevalence of MAP infection in US goat herds, although a 2009 United States Department of Agriculture Plant and Animal Health Inspection Service (USDA-APHIS) survey revealed that 1.7% of goat operations had reported suspected clinical cases of caprine PTB in 45% of these suspect herds [11]. Thus caprine PTB may be endemic, possibly widespread, and could constitute a serious problem for US goat producers. Valid estimates of prevalence of MAP infection in goats at both the animal and herd level are needed by industry stakeholders to determine whether the disease warrants interventions to mitigate its negative impact on herd profitability. In MAP affected goat herds, possible intervention goals could include

References

[1]  S. L. Ott, S. J. Wells, and B. A. Wagner, “Herd-level economic losses associated with Johne's disease on US dairy operations,” Preventive Veterinary Medicine, vol. 40, no. 3-4, pp. 179–192, 1999.
[2]  H. Petit, “Results of GDS study on paratuberculosis in small ruminants,” Point Veterinaire, vol. 37, no. 263, pp. 46–50, 2006.
[3]  P. Kostoulas, L. Leontides, C. Billinis, G. S. Amiridis, and M. Florou, “The association of sub-clinical paratuberculosis with the fertility of Greek dairy ewes and goats varies with parity,” Preventive Veterinary Medicine, vol. 74, no. 2-3, pp. 226–238, 2006.
[4]  R. D. Bush, P. A. Windsor, and J. A. Toribio, “Losses of adult sheep due to ovine Johne's disease in 12 infected flocks over a 3-year period,” Australian Veterinary Journal, vol. 84, no. 7, pp. 246–253, 2006.
[5]  K. M. Das and D. N. Seril, “Mycobacterium avium subspecies paratuberculosis in Crohn's disease: the puzzle continues,” Journal of Clinical Gastroenterology, vol. 46, no. 8, pp. 627–628, 2012.
[6]  L. Gitlin, T. J. Borody, W. Chamberlin, and J. Campbell, “Mycobacterium avium ss paratuberculosis-associated diseases: piecing the Crohn's puzzle together,” Journal of Clinical Gastroenterology, vol. 46, no. 8, pp. 649–655, 2012.
[7]  H. Okura, N. Toft, and S. S. Nielsen, “Occurrence of Mycobacterium avium subsp. paratuberculosis in milk at dairy cattle farms: a systematic review and meta-analysis,” Veterinary Microbiology, vol. 157, no. 3-4, pp. 253–263, 2012.
[8]  M. Feller, K. Huwiler, R. Stephan et al., “Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis,” Lancet Infectious Diseases, vol. 7, no. 9, pp. 607–613, 2007.
[9]  I. Abubakar, D. Myhill, S. H. Aliyu, and P. R. Hunter, “Detection of Mycobacterium avium subspecies paratubercubsis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis,” Inflammatory Bowel Diseases, vol. 14, no. 3, pp. 401–410, 2008.
[10]  NAHMS, “The goat industry: structure, concentration, demand and growth,” 090805, p. 1, 2009.
[11]  NAHMS, “Part III: biosecurity and disease-prevention practices on U.S. goat operations, 2009,” 594.0112, p. 70, 2009.
[12]  I. Dohoo, W. Martin, and H. Stryhn, Veterinary Epidemiologic Research, AVC, Prince Edward Island, Canada, 2003.
[13]  D. A. Dargatz, B. A. Byrum, L. K. Barber et al., “Evaluation of a commercial ELISA for diagnosis of paratuberculosis in cattle,” Journal of the American Veterinary Medical Association, vol. 218, no. 7, pp. 1163–1166, 2001.
[14]  S. E. Ridge and A. L. Vizard, “Determination of the optimal cutoff value for a serological assay: an example using the Johne's Absorbed EIA,” Journal of Clinical Microbiology, vol. 31, no. 5, pp. 1256–1261, 1993.
[15]  L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for a binomial proportion,” Statistical Science, vol. 16, no. 2, pp. 101–133, 2001.
[16]  W. J. Rogan and B. Gladen, “Estimating prevalence from the results of a screening test,” American Journal of Epidemiology, vol. 107, no. 1, pp. 71–76, 1978.
[17]  R. J. Whittington, G. J. Eamens, and D. V. Cousins, “Specificity of absorbed ELISA and agar gel immunodiffusion tests for paratuberculosis in goats with observations about use of these tests in infected goats,” Australian Veterinary Journal, vol. 81, no. 1-2, pp. 71–75, 2003.
[18]  U. S. A. Prionics, “Mycobacterium paratuberculosis antibody test kit. An in vitro daignostics. Parachek. An in vitro daignostic test kit for detection of antibodies to Mycobacterium paratuberculosis,” Cattle, Sheep, and Goats, ?http://www.prionics.com/diseases-solutions/paratuberculosis/.
[19]  A. Stau, B. Seelig, D. Walter, C. Schroeder, and M. Ganter, “Seroprevalence of Mycobacterium avium subsp. paratuberculosis in small ruminants in Germany,” Small Ruminant Research, vol. 105, no. 1–3, pp. 361–365, 2012.
[20]  S. S. Nielsen and N. Toft, “A review of prevalences of paratuberculosis in farmed animals in Europe,” Preventive Veterinary Medicine, vol. 88, no. 1, pp. 1–14, 2009.
[21]  P. Mercier, C. Baudry, F. Beaudeau, H. Seegers, and X. Malher, “Estimated prevalence of Mycobacterium avium subspecies paratuberculosis infection in herds of dairy goats in France,” Veterinary Record, vol. 167, no. 11, pp. 412–415, 2010.
[22]  M. Liapi, L. Leontides, P. Kostoulas et al., “Bayesian estimation of the true prevalence of Mycobacterium avium subsp. paratuberculosis infection in Cypriot dairy sheep and goat flocks,” Small Ruminant Research, vol. 95, no. 2-3, pp. 174–178, 2011.
[23]  B. ?etinkaya, H. M. Erdogan, and K. L. Morgan, “Relationships between the presence of Johne's disease and farm and management factors in dairy cattle in England,” Preventive Veterinary Medicine, vol. 32, no. 3-4, pp. 253–266, 1997.
[24]  M. B. Jakobsen, L. Alban, and S. S. Nielsen, “A cross-sectional study of paratuberculosis in 1155 Danish dairy cows,” Preventive Veterinary Medicine, vol. 46, no. 1, pp. 15–27, 2000.
[25]  K. A. Woodbine, Y. H. Schukken, L. E. Green et al., “Seroprevalence and epidemiological characteristics of Mycobacterium avium subsp. paratuberculosis on 114 cattle farms in south west England,” Preventive Veterinary Medicine, vol. 89, no. 1-2, pp. 102–109, 2009.
[26]  V. Messam, A. J. Branscum, M. T. Collins, and I. A. Gardner, “Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease,” Animal Health Research Reviews, vol. 9, no. 1, pp. 1–23, 2008.
[27]  NASS, “Angora Goats—inventory, number sold, and mohair production: 2002 and 199,” 104, p. 377, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413