全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Search for Mycobacterium avium Subspecies paratuberculosis Antigens for the Diagnosis of Paratuberculosis

DOI: 10.1155/2012/860362

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to evaluate a wide panel of antigens of Mycobacterium avium subsp. paratuberculosis (MAP) to select candidates for the diagnosis of paratuberculosis (PTB). A total of 54 recombinant proteins were spotted onto nitrocellulose membranes and exposed to sera from animals with PTB ( ), healthy animals ( ), and animals experimentally infected with M. bovis ( ). This initial screening allowed us to select seven antigens: MAP 2513, MAP 1693, MAP 2020, MAP 0038, MAP 1272, MAP 0209c, and MAP 0210c, which reacted with sera from animals with PTB and showed little cross-reactivity with sera from healthy animals and animals experimentally infected with M. bovis. The second step was to evaluate the antigen cocktail of these seven antigens by ELISA. For this evaluation, we used sera from animals with PTB ( ), healthy animals ( ), and animals experimentally infected with M. bovis ( ). Using ELISA, the cocktail of the seven selected MAP antigens reacted with sera from 18 of the 25 animals with PTB and did not exhibit cross-reactivity with healthy animals and only low reactivity with animals with bovine tuberculosis. The combined application of these antigens could form part of a test which may help in the diagnosis of PTB. 1. Introduction PTB is a prevalent and economically important disease that affects cattle and thus impacts on the cattle industry. It is caused by MAP. Clinical PTB is characterized by chronic granulomatous enteritis with clinical signs of diarrhea, weight loss, decreased milk production, and mortality. However, most infected cattle show no clinical signs during the prolonged incubation stage of infection [1]. On the other hand, a number of theories have proposed that the principal infective agent of Crohn’s disease, a chronic enteropathy in humans, is MAP [2–4]. The economic impact and possible link to Crohn's disease highlights the importance of the development of control programs at the herd level. To this end, it is necessary to improve the diagnostic methods of PTB. Cattle are most often infected as young calves, before 6 month of age, but some studies have shown that infection may also occur in adult cattle. Fecal shedding of MAP generally starts after 2 years, and clinical symptoms appear after an incubation period of 2–10 years. In addition, the elimination of the agent through the stool is very variable [5]. Cell-mediated immune response wanes with progression of the disease and when this occurs, a humoral immune response becomes measurable. It has been shown that cattle are more likely to have a combined antibody and

References

[1]  A. Tiwari, J. A. VanLeeuwen, S. L. B. McKenna, G. P. Keefe, and H. W. Barkema, “Johne's disease in Canada part I: clinical symptoms, pathophysiology, diagnosis, and prevalence in dairy herds,” The Canadian Veterinary Journal, vol. 47, no. 9, pp. 874–882, 2006.
[2]  R. J. Chiodini and C. A. Rossiter, “Paratuberculosis: a potential zoonosis?” The Veterinary Clinics of North America. Food Animal Practice, vol. 12, no. 2, pp. 457–467, 1996.
[3]  J. Hermon-Taylor, T. J. Bull, J. M. Sheridan, et al., “Mycobacterium avium subspecies paratuberculosis in the causation of Crohn's disease,” World Journal of Gastroenterology, vol. 6, no. 5, pp. 630–632, 2000.
[4]  J. Hermon-Taylor, T. J. Bull, J. M. Sheridan, J. Cheng, M. L. Stellakis, and N. Sumar, “Causation of Crohn's disease by Mycobacterium avium subspecies paratuberculosis,” Canadian Journal of Gastroenterology, vol. 14, no. 6, pp. 521–539, 2000.
[5]  D. C. Sockett, “Johne's disease eradication and control: regulatory implications,” The Veterinary Clinics of North America. Food Animal Practice, vol. 12, no. 2, pp. 431–440, 1996.
[6]  A. P. Koets, V. P. M. G. Rutten, M. de Boer, D. Bakker, P. Valentin-Weigand, and W. van Eden, “Differential changes in heat shock protein-, lipoarabinomannan-, and purified protein derivative-specific immunoglobulin G1 and G2 isotype responses during bovine Mycobacterium avium subsp. paratuberculosis infection,” Infection and Immunity, vol. 69, no. 3, pp. 1492–1498, 2001.
[7]  W. R. Waters, J. M. Miller, M. V. Palmer et al., “Early induction of humoral and cellular immune responses during experimental Mycobacterium avium subsp. paratuberculosis infection of calves,” Infection and Immunity, vol. 71, no. 9, pp. 5130–5138, 2003.
[8]  D. J. Begg, K. de Silva, N. Carter, K. M. Plain, A. Purdie, and R. J. Whittington, “Does a th1 over th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections?” Immunobiology, vol. 216, no. 7, pp. 840–846, 2011.
[9]  M. P. Fry, J. Kruze, and M. T. Collins, “Evaluation of four commercial enzyme-linked immunosorbent assays for the diagnosis of bovine paratuberculosis in Chilean dairy herds,” Journal of Veterinary Diagnostic Investigation, vol. 20, no. 3, pp. 329–332, 2008.
[10]  G. van Schaik, F. Haro, A. Mella, and J. Kruze, “Bayesian analysis to validate a commercial ELISA to detect paratuberculosis in dairy herds of Southern Chile,” Preventive Veterinary Medicine, vol. 79, no. 1, pp. 59–69, 2007.
[11]  G. Costanzo, F. A. Pinedo, M. L. Mon et al., “Accuracy assessment and screening of a dairy herd with paratuberculosis by three different ELISAs,” Veterinary Microbiology, vol. 156, no. 1-2, pp. 183–188, 2012.
[12]  E. A. Sugden, K. Stilwell, and A. Michaelides, “A comparison of lipoarabinomannan with other antigens used in absorbed enzyme immunoassays for the serological detection of cattle infected with Mycobacterium paratuberculosis,” Journal of Veterinary Diagnostic Investigation, vol. 9, no. 4, pp. 413–417, 1997.
[13]  L. Li, J. P. Bannantine, Q. Zhang et al., “The complete genome sequence of Mycobacterium avium subspecies paratuberculosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 12344–12349, 2005.
[14]  V. Hughes, J. P. Bannantine, S. Denham et al., “Immunogenicity of proteome-determined Mycobacterium avium subsp. paratuberculosis-specific proteins in sheep with paratuberculosis,” Clinical and Vaccine Immunology, vol. 15, no. 12, pp. 1824–1833, 2008.
[15]  J. P. Bannantine, W. R. Waters, J. R. Stabel et al., “Development and use of a partial Mycobacterium avium subspecies paratuberculosis protein array,” Proteomics, vol. 8, no. 3, pp. 463–474, 2008.
[16]  H. Mikkelsen, C. Aagaard, S. S. Nielsen, and G. Jungersen, “Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential,” Veterinary Microbiology, vol. 152, no. 1-2, pp. 1–20, 2011.
[17]  G. R. Hirschfield, M. McNeil, and P. J. Brennan, “Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis,” Journal of Bacteriology, vol. 172, no. 2, pp. 1005–1013, 1990.
[18]  P. T. J. Willemsen, J. Westerveen, A. Dinkla, D. Bakker, F. G. van Zijderveld, and J. E. R. Thole, “Secreted antigens of Mycobacterium avium subspecies paratuberculosis as prominent immune targets,” Veterinary Microbiology, vol. 114, no. 3-4, pp. 337–344, 2006.
[19]  F. Bigi, A. Gioffré, L. Klepp et al., “Mutation in the P36 gene of Mycobacterium bovis provokes attenuation of the bacillus in a mouse model,” Tuberculosis, vol. 85, no. 4, pp. 221–226, 2005.
[20]  D. Cho and M. T. Collins, “Comparison of the proteosomes and antigenicities of secreted and cellular proteins produced by Mycobacterium paratuberculosis,” Clinical and Vaccine Immunology, vol. 13, no. 10, pp. 1155–1161, 2006.
[21]  D. Cho, N. Sung, and M. T. Collins, “Identification of proteins of potential diagnostic value for bovine paratuberculosis,” Proteomics, vol. 6, no. 21, pp. 5785–5794, 2006.
[22]  S. J. Shin, D. Cho, and M. T. Collins, “Diagnosis of bovine paratuberculosis by a novel enzyme-linked immunosorbent assay based on early secreted antigens of Mycobacterium avium subsp. paratuberculosis,” Clinical and Vaccine Immunology, vol. 15, no. 8, pp. 1277–1281, 2008.
[23]  V. Hughes, S. Smith, A. Garcia-Sanchez, J. Sales, and K. Stevenson, “Proteomic comparison of Mycobacterium avium subspecies paratuberculosis grown in vitro and isolated from clinical cases of ovine paratuberculosis,” Microbiology, vol. 153, no. 1, pp. 196–205, 2007.
[24]  B. Leroy, V. Roupie, I. No?l-Georis et al., “Antigen discovery: a postgenomic approach to paratuberculosis diagnosis,” Proteomics, vol. 7, no. 7, pp. 1164–1176, 2007.
[25]  T. J. Radosevich, T. A. Reinhardt, J. D. Lippolis, J. P. Bannantine, and J. R. Stabel, “Proteome and differential expression analysis of membrane and cytosolic proteins from Mycobacterium avium subsp. paratuberculosis strains K-10 and 187,” Journal of Bacteriology, vol. 189, no. 3, pp. 1109–1117, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133