全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth

DOI: 10.1155/2012/567140

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis) that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself. 1. Introduction Infection is the most common and most serious complication of major burn injuries and is related to burn size and severity of the injury [1]. Currently, sepsis accounts for 50–60% of deaths in burn patients despite major improvements in antimicrobial therapies. Microbial colonization of the open burn wounds is usually established by the end of the first week after injury [1] despite the use of antimicrobial agents. If the bacterial density overwhelms the immune defenses of the host, invasive burn sepsis may ensue. The burn wound becomes colonized by bacteria in part because of the loss of the skin barrier function, and in part because the burn wound has few or no blood vessels which prevents the antimicrobial action of blood-borne cells from the host immune system. Burn injury leads to suppression of nearly all aspects of the immune response [2]. Postburn serum levels of immunoglobulins, fibronectin, and complement are reduced, and there is a diminished capacity for opsonization of bacteria. Chemotaxis, phagocytosis, and killing functions of neutrophils, monocytes, and macrophages are impaired. Granulocytopenia is common following burn injury. The cellular immune response is impaired, as evidenced by delayed allograft rejection, anergy to common antigens, impaired lymphocyte mitogenesis, and altered mixed lymphocyte responsiveness. Burn injury results in reductions in interleukin-2 (Il-2) production, T-cell and NK cell cytotoxicity, and helper- to- suppressor T-cell ratio (HSR). Clinical findings clearly suggest that burn size profoundly impacts patient immune status and survival of burn patients

References

[1]  S. T. O'Sullivan and T. P. F. O'Connor, “Immunosuppression following thermal injury: the pathogenesis of immunodysfunction,” British Journal of Plastic Surgery, vol. 50, no. 8, pp. 615–623, 1997.
[2]  M. Alexander, I. H. Chaudry, and M. G. Schwacha, “Relationships between burn size, immunosuppression, and macrophage hyperactivity in a murine model of thermal injury,” Cellular Immunology, vol. 220, no. 1, pp. 63–69, 2002.
[3]  D. N. Herndon, Ed., Total Burn Care, WB Saunders, London, UK, 1st edition, 1996.
[4]  J. B. O'Mahony, J. Wood, M. L. Rodrick, and J. A. Mannick, “Changes in T lymphocyte subsets following injury. Assessment by flow cytometry and relationship to sepsis,” Annals of Surgery, vol. 202, no. 5, pp. 580–586, 1985.
[5]  M. Choinière, M. Dumont, J. Papillon, and D. R. Garrel, “Prediction of death in patients with burns,” Lancet, vol. 353, no. 9171, pp. 2211–2212, 1999.
[6]  G. Germann, U. Barthold, R. Lefering, T. Raff, and B. Hartmann, “The impact of risk factors and pre-existing conditions on the mortality of burn patients and the precision of predictive admission-scoring systems,” Burns, vol. 23, no. 3, pp. 195–203, 1997.
[7]  G. L. Flynn, C. R. Behl, and K. A. Walters, “Permeability of thermally damaged skin. III. Influence of scalding temperature on mass transfer of water and n-alkanols across hairless mouse skin,” Burns, vol. 8, no. 1, pp. 47–58, 1981.
[8]  B. J. Poindexter, S. Bhat, L. M. Buja, R. J. Bick, and S. M. Milner, “Localization of antimicrobial peptides in normal and burned skin,” Burns, vol. 32, no. 4, pp. 402–407, 2006.
[9]  J. L. Kadurugamuwa, K. Modi, J. Yu, K. P. Francis, T. Purchio, and P. R. Contag, “Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice,” Infection and Immunity, vol. 73, no. 7, pp. 3878–3887, 2005.
[10]  J. L. Kadurugamuwa, L. Sin, E. Albert et al., “Direct continuous method for monitoring biofilm infection in a mouse model,” Infection and Immunity, vol. 71, no. 2, pp. 882–890, 2003.
[11]  F. Gad, T. Zahra, K. P. Francis, T. Hasan, and M. R. Hamblin, “Targeted photodynamic therapy of established soft-tissue infections in mice,” Photochemical and Photobiological Sciences, vol. 3, no. 5, pp. 451–458, 2004.
[12]  E. A. Deitch, R. Rutan, and J. P. Waymack, “Trauma, shock, and gut translocation,” New Horizons, vol. 4, no. 2, pp. 289–299, 1996.
[13]  L. Gianotti, T. Pyles, J. W. Alexander, G. F. Babcock, and M. A. Carey, “Impact of blood transfusion and burn injury on microbial translocation and bacterial survival,” Transfusion, vol. 32, no. 4, pp. 312–317, 1992.
[14]  B. Schittek, M. Paulmann, I. Senyürek, and H. Steffen, “The role of antimicrobial peptides in human skin and in skin infectious diseases,” Infectious Disorders—Drug Targets, vol. 8, no. 3, pp. 135–143, 2008.
[15]  T. Shoup, E. Carter, A. Bonab, K. Paul, A. Fischman, and D. Elmaleh, “Evaluation of 2-[18F]fluoro-2-deoxy-L-glucose for imaging focal areas of inflammation with PET,” Journal of Nuclear Medicine, vol. 52, supplement 1, p. 1636, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413