全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of High-Mobility Group A Protein Application on Canine Adipose-Derived Mesenchymal Stem Cells In Vitro

DOI: 10.1155/2012/752083

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multipotency and self-renewal are considered as most important features of stem cells to persist throughout life in tissues. In this context, the role of HMGA proteins to influence proliferation of adipose-derived mesenchymal stem cell (ASCs) while maintaining their multipotent and self-renewal capacities has not yet been investigated. Therefore, extracellular HMGA1 and HMGA2 application alone (10–200?ng/mL) and in combination with each other (100, 200?ng/mL each) was investigated with regard to proliferative effects on canine ASCs (cASCs) after 48 hours of cultivation. Furthermore, mRNA expression of multipotency marker genes in unstimulated and HMGA2-stimulated cASCs (50, 100?ng/mL) was analyzed by RT-qPCR. HMGA1 significantly reduced cASCs proliferation in concentrations of 10–200?ng/mL culture medium. A combination of HMGA1 and HMGA2 protein (100 and 200?ng/mL each) caused the same effects, whereas no significant effect on cASCs proliferation was shown after HMGA2 protein application alone. RT-qPCR results showed that expression levels of marker genes including KLF4, SOX2, OCT4, HMGA2, and cMYC mRNAs were on the same level in both HMGA2-protein-stimulated and -unstimulated cASCs. Extracellular HMGA protein application might be valuable to control proliferation of cASCs in context with their employment in regenerative approaches without affecting their self-renewal and multipotency abilities. 1. Introduction Mesenchymal stem cells (MSCs) are considered as one source of progenitor cells for therapeutic approaches in regenerative medicine. Although MSCs are commonly derived from bone marrow (BMSCs) [1], adipose-tissue-derived MSCs (ASCs) might be used as an alternative multipotent cell source [2–4]. Similar to BMSCs, ASCs have been also evaluated for multilineage differentiation capacities including differentiation into a chondrogenic [5, 6], osteogenic [5–7], adipogenic [5–7], neurogenic [8, 9], myogenic [6, 8, 10], angiogenic [11], and cardiomyogenic [10] lineage. In contrast to bone marrow, a large amount of adipose tissue can easily be obtained via less invasive and harmful methods making the use of ASCs as a source of stem cells very attractive [12]. Furthermore, it has recently been reported that ASCs have stronger capabilities than BMSCs to maintain their phenotype and multipotency potential even after 25 passages of in vitro cultivation [10]. The self-renewal and multipotency characteristics through regular and organized cell division are the most important features of stem cells to persist throughout life in tissues. These features are

References

[1]  E. Leonardi, V. Devescovi, F. Perut, G. Ciapetti, and A. Giunti, “Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur,” La Chirurgia Degli Organi di Movimento, vol. 92, no. 2, pp. 97–103, 2008.
[2]  B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005.
[3]  H. Hattori, M. Sato, K. Masuoka et al., “Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source,” Cells Tissues Organs, vol. 178, no. 1, pp. 2–12, 2004.
[4]  Y. A. Romanov, A. N. Darevskaya, N. V. Merzlikina, and L. B. Buravkova, “Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities,” Bulletin of Experimental Biology and Medicine, vol. 140, no. 1, pp. 138–143, 2005.
[5]  M. Neupane, C. C. Chang, M. Kiupel, and V. Yuzbasiyan-Gurkan, “Isolation and characterization of canine adipose-derived mesenchymal stem cells,” Tissue Engineering—Part A, vol. 14, no. 6, pp. 1007–1015, 2008.
[6]  P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[7]  Y. Y. Shi, R. P. Nacamuli, A. Salim, and M. T. Longaker, “The osteogenic potential of adipose-derived mesenchmal cells is maintained with aging,” Plastic and Reconstructive Surgery, vol. 116, no. 6, pp. 1686–1696, 2005.
[8]  Y. Lin, X. Chen, Z. Yan et al., “Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 69–78, 2006.
[9]  K. M. Safford, K. C. Hicok, S. D. Safford et al., “Neurogenic differentiation of murine and human adipose-derived stromal cells,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 371–379, 2002.
[10]  Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui, “Adipose-derived stem cell: a better stem cell than BMSC,” Cell Biochemistry and Function, vol. 26, no. 6, pp. 664–675, 2008.
[11]  Y. L. Tang, Q. Zhao, Y. C. Zhang et al., “Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium,” Regulatory Peptides, vol. 117, no. 1, pp. 3–10, 2004.
[12]  M. L. Tong, M. Martina, D. W. Hutmacher, J. H. P. O. Hui, H. L. Eng, and B. Lim, “Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages,” Stem Cells, vol. 25, no. 3, pp. 750–760, 2007.
[13]  A. Rizzino, “Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells,” Wiley Interdisciplinary Reviews, vol. 1, no. 2, pp. 228–236, 2009.
[14]  K. N. Smith, A. M. Singh, and S. Dalton, “Myc represses primitive endoderm differentiation in pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 3, pp. 343–354, 2010.
[15]  K. K. K. Chan, J. Zhang, N. Y. Chia et al., “KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells,” Stem Cells, vol. 27, no. 9, pp. 2114–2125, 2009.
[16]  M. B. Jones, C. H. Chu, J. C. Pendleton et al., “Proliferation and pluripotency of human embryonic stem cells maintained on type i collagen,” Stem Cells and Development, vol. 19, no. 12, pp. 1923–1935, 2010.
[17]  S. M. Kooistra, V. van den Boom, R. P. Thummer et al., “Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression,” Stem Cells, vol. 28, no. 10, pp. 1703–1714, 2010.
[18]  M. Richards, S. P. Tan, J. H. Tan, W. K. Chan, and A. Bongso, “The transcriptome profile of human embryonic stem cells as defined by SAGE,” Stem Cells, vol. 22, no. 1, pp. 51–64, 2004.
[19]  J. Nishino, I. Kim, K. Chada, and S. J. Morrison, “Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression,” Cell, vol. 135, no. 2, pp. 227–239, 2008.
[20]  K. Monzen, Y. Ito, A. T. Naito et al., “A crucial role of a high mobility group protein HMGA2 in cardiogenesis,” Nature Cell Biology, vol. 10, no. 5, pp. 567–574, 2008.
[21]  S. Sanna, A. U. Jackson, R. Nagaraja et al., “Common variants in the GDF5-UQCC region are associated with variation in human height,” Nature Genetics, vol. 40, no. 2, pp. 198–203, 2008.
[22]  M. Bustin, “Revised nomenclature for high mobility group (HMG) chromosomal proteins,” Trends in Biochemical Sciences, vol. 26, no. 3, pp. 152–153, 2001.
[23]  R. Grosschedl, K. Giese, and J. Pagel, “HMG domain proteins: architectural elements in the assembly of nucleoprotein structures,” Trends in Genetics, vol. 10, no. 3, pp. 94–100, 1994.
[24]  R. Reeves, D. D. Edberg, and Y. Li, “Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells,” Molecular and Cellular Biology, vol. 21, no. 2, pp. 575–594, 2001.
[25]  R. Sgarra, A. Rustighi, M. A. Tessari et al., “Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer,” FEBS Letters, vol. 574, no. 1–3, pp. 1–8, 2004.
[26]  Y. Tay, S. Peter, I. Rigoutsos, P. Barahona, S. Ahmed, and P. Dr?ge, “Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development,” Stem Cell Reviews and Reports, vol. 5, no. 4, pp. 328–333, 2010.
[27]  E. Vartiainen, J. Palvimo, A. Mahonen, A. Linnala-Kankkunen, and P. H. Maenpaa, “Selective decrease in low-M(r) HMG proteins HMG I and HMG Y during differentiation of mouse teratocarcinoma cells,” FEBS Letters, vol. 228, no. 1, pp. 45–48, 1988.
[28]  X. Zhou, K. F. Benson, H. R. Ashar, and K. Chada, “Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C,” Nature, vol. 376, no. 6543, pp. 771–774, 1995.
[29]  O. Li, J. Li, and P. Dr?ge, “DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells,” FEBS Letters, vol. 581, no. 18, pp. 3533–3537, 2007.
[30]  A. Eda, Y. Tamura, M. Yoshida, and H. Hohjoh, “Systematic gene regulation involving miRNAs during neuronal differentiation of mouse P19 embryonic carcinoma cell,” Biochemical and Biophysical Research Communications, vol. 388, no. 4, pp. 648–653, 2009.
[31]  S. I. Akaboshi, S. Watanabe, Y. Hino et al., “HMGA1 is induced by Wnt/β-catenin pathway and maintains cell proliferation in gastric cancer,” American Journal of Pathology, vol. 175, no. 4, pp. 1675–1685, 2009.
[32]  G. M. Pierantoni, S. Battista, F. Pentimalli et al., “A truncated HMGA1 gene induces proliferation of the 3T3-L1 pre-adipocytic cells: a model of human lipomas,” Carcinogenesis, vol. 24, no. 12, pp. 1861–1869, 2003.
[33]  L. Caron, F. Bost, M. Prot, P. Hofman, and B. Binétruy, “A new role for the oncogenic high-mobility group A2 transcription factor in myogenesis of embryonic stem cells,” Oncogene, vol. 24, no. 41, pp. 6281–6291, 2005.
[34]  A. Richter, G. Hauschild, H. M. Escobar, I. Nolte, and J. Bullerdiek, “Application of high-mobility-group-a proteins increases the proliferative activity of chondrocytes in vitro,” Tissue Engineering—Part A, vol. 15, no. 3, pp. 473–477, 2009.
[35]  E. K. Karlsson and K. Lindblad-Toh, “Leader of the pack: gene mapping in dogs and other model organisms,” Nature Reviews Genetics, vol. 9, no. 9, pp. 713–725, 2008.
[36]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[37]  M. Solursh, “Cartilage stem cells: regulation of differentiation,” Connective Tissue Research, vol. 20, no. 1–4, pp. 81–89, 1989.
[38]  M. Fischer, M. Skowron, and F. Berthold, “Reliable transcript quantification by real-time reverse transcriptase-polymerase chain reaction in primary neuroblastoma using normalization to averaged expression levels of the control genes HPRT1 and SDHA,” Journal of Molecular Diagnostics, vol. 7, no. 1, pp. 89–96, 2005.
[39]  B. Brinkhof, B. Spee, J. Rothuizen, and L. C. Penning, “Development and evaluation of canine reference genes for accurate quantification of gene expression,” Analytical Biochemistry, vol. 356, no. 1, pp. 36–43, 2006.
[40]  S. M. Hammond and N. E. Sharpless, “HMGA2, MicroRNAs, and stem cell aging,” Cell, vol. 135, no. 6, pp. 1013–1016, 2008.
[41]  B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005.
[42]  T. Martinello, I. Bronzini, L. Maccatrozzo et al., “Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation,” Research in Veterinary Science, vol. 91, no. 1, pp. 18–24, 2010.
[43]  C. Csaki, U. Matis, A. Mobasheri, H. Ye, and M. Shakibaei, “Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study,” Histochemistry and Cell Biology, vol. 128, no. 6, pp. 507–520, 2007.
[44]  M. Narita, M. Narita, V. Krizhanovsky et al., “A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation,” Cell, vol. 126, no. 3, pp. 503–514, 2006.
[45]  A. Richter, M. Lübbing, H. G. Frank, I. Nolte, J. C. Bullerdiek, and I. von Ahsen, “High-mobility group protein HMGA2-derived fragments stimulate the proliferation of chondrocytes and adipose tissue-derived stem cells,” European Cells & Materials, vol. 21, pp. 355–363, 2011.
[46]  R. Palumbo, M. Sampaolesi, F. De Marchis et al., “Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation,” Journal of Cell Biology, vol. 164, no. 3, pp. 441–449, 2004.
[47]  E. Meng, Z. Guo, H. Wang et al., “High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway,” Stem Cells and Development, vol. 17, no. 4, pp. 805–813, 2008.
[48]  C. Zhao, G. Sun, S. Li et al., “MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1876–1881, 2010.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133