Based on a wealth of recent findings, in conjunction with earliest chronologies pertaining to evolutionary emergences of ancestral RNA viruses, ducks, Influenzavirus A (assumingly within ducks), and hominids, as well as to the initial domestication of mallard duck (Anas platyrhynchos), jungle fowl (Gallus gallus), wild turkey (Meleagris gallopavo), wild boar (Sus scrofa), and wild horse (Equus ferus), presumed genesis modes of primordial pandemic influenza strains have multidisciplinarily been configured. The virological fundamentality of domestication and farming of those various avian and mammalian species has thereby been demonstrated and broadly elucidated, within distinctive coevolutionary paradigms. The mentioned viral genesis modes were then analyzed, compatibly with common denominators and flexibility that mark the geographic profile of the last 18 pandemic strains, which reputedly emerged since 1510, the antigenic profile of the last 10 pandemic strains since 1847, and the genomic profile of the last 5 pandemic strains since 1918, until present. Related ecophylogenetic and biogeographic aspects have been enlightened, alongside with the crucial role of spatial virus gene dissemination by avian hosts. A fairly coherent picture of primary and late evolutionary and genomic courses of pandemic strains has thus been attained, tentatively. Specific patterns underlying complexes prone to generate past and future pandemic strains from viral reservoir in animals are consequentially derived. 1. Introduction The historical emergence and pandemic potency of influenza type A virus—a prominent anthropozoonotic single-stranded segmented RNA virus (family Orthomyxoviridae)—have long constituted challenging phenomena. The Greek physician Hippocrates, the “Father of Medicine,” first described influenza in 412?BC [1]. The name “influenza” was derived from the belief of Italian astrologers in the Middle Ages that the periodic appearance of the disease was in some way related to “influence of heavenly bodies” [2]. Rather earthily, the French named influenza as “the grippe,” suggesting the acute onset of illness, upon which the patient suddenly was seized or gripped by the disease [3]. Yet still recently, influenza has been seriously attributed to introduction of viruses from the space, due to meteorological processes [4]. As far as the origins of life are concerned at large, it has been proposed that cometary ice might have embodied the provenance of earliest precursors of viruses in general on Planet Earth and perhaps cosmically [5]. Influenza pandemics are
References
[1]
WHO, “Fifty years of influenza surveillance,” 1999, http://who.int/inf-pr-1999/en/pr99-11.html.
[2]
J. F. Townsend, “History of influenza epidemics,” Annals of Medical History, vol. 5, no. 6, pp. 533–547, 1993.
[3]
B. A. Cunha, “Influenza: historical aspects of epidemics and pandemics,” Infectious Disease Clinics of North America, vol. 18, no. 1, pp. 141–155, 2004.
[4]
F. Hoyle and N. C. Wickramasinghe, “Influenza—evidence against contagion: discussion paper,” Journal of the Royal Society of Medicine, vol. 83, no. 4, pp. 258–261, 1990.
[5]
R. Joseph and R. Schild, “Origins, evolution, and distribution of life in the cosmos: panspermia, genetics, microbes, and viral visitors from the stars,” Journal of Cosmology, vol. 7, no. 1, pp. 1616–1670, 2010.
[6]
Y. Becker, “Molecular evolution of viruses: an interim summary,” Virus Genes, vol. 11, no. 2-3, pp. 299–302, 1995.
R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka, “Evolution and ecology of influenza A viruses,” Microbiological Reviews, vol. 56, no. 1, pp. 152–179, 1992.
Y. Jing and R. K. Flad, “Pig domestication in ancient China,” Antiquity, vol. 76, no. 293, pp. 724–732, 2002.
[11]
D. M. Sherman, Tending Animals in the Global Village, Blackwell Publishing, Oxford, UK, 2002.
[12]
B. Wucheng, “The research on the origin of the house–duck in China,” in Proceedings of the International Symposium on Waterfowl Production, Beijing, China, pp. 125–129, Pergamon Press, Oxford, UK, 1998.
[13]
Influenza Overview—ProMED Summary of Strains, 2010, http://www.medicalecology.org/diseases/influenza/influenza.htm.
[14]
A. K. Outram, N. A. Stear, R. Bendrey et al., “The earliest horse harnessing and milking,” Science, vol. 323, no. 5919, pp. 1332–1335, 2009.
[15]
R. Shore, “Pre-Aztec people first domesticated the turkey we eat today,” 2010, http://www.scwist.ca/index.php/main/entry/pre-aztec-people-first-domesticated-the-turkey-we-eat-today-sfu-researchers/.
[16]
G. B. Chang, H. Chang, X. P. Liu et al., “Genetic diversity of wild quail in China ascertained with microsatellite DNA markers,” Asian-Australasian Journal of Animal Sciences, vol. 32, no. 8, pp. 795–803, 2005.
[17]
J. L. Gingerich, Florida's Fabulous Mammals, World Publications, Tampa Bay, Calif, USA, 1995.
[18]
ProMed—Medical Ecology, Influenza Overview—Summary of Strains, 2004, http://www.medicalecology.org/diseases/influenza/influenza.htm.
[19]
M. A. Miller, C. Viboud, M. Balinska, and L. Simonsen, “The signature features of influenza pandemics—implications for policy,” The New England Journal of Medicine, vol. 360, no. 25, pp. 2595–2598, 2009.
[20]
WHO, Current WHO Phase of Pandemic Alert, 2009.
[21]
V. Gregory, M. Bennett, M. H. Orkhan et al., “Emergence of influenza A H1N2 reassortant viruses in the human population during 2001,” Virology, vol. 300, no. 1, pp. 1–7, 2002.
[22]
E. Ghedin, A. Fitch, A. Boyne et al., “Mixed infection and the genesis of influenza virus diversity,” Journal of Virology, vol. 83, no. 17, pp. 8832–8841, 2009.
[23]
C. Viboud, T. Tam, D. Fleming, A. Handel, M. A. Miller, and L. Simonsen, “Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic,” Vaccine, vol. 24, no. 44–46, pp. 6701–6707, 2006.
[24]
W. Sun, J. Wang, J. Guo et al., “Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China,” Journal of Virology, vol. 83, no. 17, pp. 8957–8964, 2009.
[25]
J. S. Hall, K. T. Bentler, G. Landolt et al., “Influenza infection in wild raccoons,” Emerging Infectious Diseases, vol. 14, no. 12, pp. 1842–1848, 2008.
[26]
R. Chen and E. C. Holmes, “Avian influenza virus exhibits rapid evolutionary dynamics,” Molecular Biology and Evolution, vol. 23, no. 12, pp. 2336–2341, 2006.
[27]
D. E. Stallknecht, M. T. Kearney, S. M. Shane, and P. J. Zwank, “Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water,” Avian Diseases, vol. 34, no. 2, pp. 412–418, 1990.
[28]
Y. Guo, M. Wang, Y. Kawaoka et al., “Characterization of a new avian-like influenza A virus from horses in China,” Virology, vol. 188, no. 1, pp. 245–255, 1992.
[29]
J. Tu, H. Zhou, T. Jiang et al., “Isolation and molecular characterization of equine H3N8 influenza viruses from pigs in China,” Archives of Virology, vol. 154, no. 5, pp. 887–890, 2009.
[30]
G. B. Sharp, Y. Kawaoka, D. J. Jones et al., “Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance,” Journal of Virology, vol. 71, no. 8, pp. 6128–6135, 1997.
[31]
C. W. Potter, Influenza: Perspectives in Medical Virology, vol. 7, Elsevier, Amsterdam, The Netherlands, 2002.
[32]
W. W. Dimock, “Differential diagnoses of diseases of swine,” Journal of the American Veterinary Medical Association, vol. 54, no. 4, pp. 321–337, 1919.
[33]
Y. Guan, K. F. Shortridge, S. Krauss, P. H. Li, Y. Kawaoka, and R. G. Webster, “Emergence of avian H1N1 influenza viruses in pigs in China,” Journal of Virology, vol. 70, no. 11, pp. 8041–8046, 1996.
[34]
I. Donatelli, L. Campitelli, M. R. Castrucci, A. Ruggieri, L. Sidoli, and J. S. Oxford, “Detection of two antigenic subpopulations of A(H1N1) influenza viruses from pigs: antigenic drift or interspecies transmission?” Journal of Medical Virology, vol. 34, no. 4, pp. 248–257, 1991.
[35]
C. W. Olsen, I. H. Brown, B. C. Easterday, and K. Van Reet, “Swine influenza,” in Diseases of Swine, B. E. Straw and D. J. Taylor, Eds., p. 471, Blackwell Publishing, Oxford, UK, 9th edition, 2006.
[36]
W. Ma, A. L. Vincent, M. R. Gramer et al., “Identification of H2N3 influenza A viruses from swine in the United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20949–20954, 2007.
[37]
I. Markowska-Daniel, “Monitoring of swine influenza in Poland in the season 2001/2002,” in Proceedings of the 4rth International Symposium on Emerging and Re-Emerging Pig Diseases, pp. 277–278, Rome, Italy, 2003.
[38]
G. Vengust, J. Grom, A. Bidovec, and M. Kramer, “Monitoring of classical swine fever in wild boar (Sus scrofa) in Slovenia,” Journal of Veterinary Medicine B, vol. 53, no. 5, pp. 247–249, 2006.
[39]
F. Ruiz-Fons, J. Segalés, and C. Gortázar, “A review of viral diseases of the European wild boar: effects of population dynamics and reservoir r?le,” Veterinary Journal, vol. 176, no. 2, pp. 158–169, 2008.
[40]
V. Kaden, E. Lange, E. Starick, W. Bruer, W. Krakowski, and M. Klopries, “Epidemiological survey of swine influenza A virus in selected wild boar populations in Germany,” Veterinary Microbiology, vol. 131, no. 1-2, pp. 123–132, 2008.
[41]
Avian Flu Diary, “Mixing vessels for influenza,” 2010, http://www.virusinfluenza.net/avian-flu-diary-mixing-vessels-for-influenza/+Schrenzel+2010+influenza+opposum&cd=9&hl=en&ct=clnk.
[42]
J. Keawcharoen, K. Oraveerakul, T. Kuiken et al., “Avian influenza H5N1 in tigers and leopards,” Emerging Infectious Diseases, vol. 10, no. 12, pp. 2189–2191, 2004.
[43]
R. Klopfleisch, P. U. Wolf, C. Wolf et al., “Encephalitis in a stone marten (Martes foina) after natural infection with highly pathogenic avian influenza virus subtype H5N1,” Journal of Comparative Pathology, vol. 137, no. 2-3, pp. 155–159, 2007.
[44]
D. Shoham, “Review: molecular evolution and the feasibility of an avian influenza virus becoming a pandemic strain—a conceptual shift,” Virus Genes, vol. 33, no. 2, pp. 127–132, 2006.
[45]
A. G. Elder, B. O'Donnell, E. A. B. McCruden, I. S. Symington, and W. F. Carman, “Incidence and recall of influenza in a cohort of Glasgow healthcare workers during the 1993-4 epidemic: results of serum testing and questionnaire,” British Medical Journal, vol. 313, no. 7067, pp. 1241–1242, 1996.
[46]
WHO, “Inter-country-consultation: influenza A/H5N1 in humans in Asia: Manila, Philippines,” 2005, http://www.who.int/csr/resources/publications/influenza/WHO_CDS_CSR_GIP_2005_7/en/.
[47]
C. B. Bridges, J. M. Katz, W. H. Seto et al., “Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong,” Journal of Infectious Diseases, vol. 181, no. 1, pp. 344–348, 2000.
[48]
A. S. Beare and R. G. Webster, “Replication of avian influenza viruses in humans,” Archives of Virology, vol. 119, no. 1-2, pp. 37–42, 1991.
[49]
R. Tellier, “Review of aerosol transmission of influenza A virus,” Emerging Infectious Diseases, vol. 12, no. 11, pp. 1657–1662, 2006.
[50]
J. J. Stewart, “Parameters of influenza aerosol transmission,” Comments on Theoretical Biology, vol. 7, no. 5, pp. 445–457, 2002.
[51]
D. Shoham, “Is there a critical mass that would likely trigger the emergence of a pandemic avian influenza genotype?” in Viral Genomes: Diversity, Properties and Parameters, Z. Feng and M. Long, Eds., pp. 123–143, Nova Publishers, New York, NY, USA, 2009.
[52]
W. Ma, R. E. Kahn, and J. A. Richt, “The pig as a mixing vessel for influenza viruses: human and veterinary implications,” Journal of Molecular and Genetic Medicine, vol. 3, no. 1, pp. 58–166, 2009.
M. R. W. Barber Jr., J. R. Aldridge, R. G. Webster, and K. E. Magor, “Association of RIG-I with innate immunity of ducks to influenza,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 5913–5918, 2010.
[55]
D. E. Swayne, “Epidemiology of avian influenza in agricultural and other man-made systems,” in Avian Influenza, D. E. Swayne, Ed., pp. 59–85, Blackwell Publishing, Ames, Iowa, USA, 2008.
[56]
N. Yakovleva and A. Flynn, Innovation and the Food Supply Chain: The Case Study of the Chicken, Working Paper Series no. 20, The Centre for Business Relationships, Accountability, Sustainability & Society (BRASS), Cardiff University, Cardiff, UK, 2004.
[57]
J. Humberd, K. Boyd, and R. G. Webster, “Emergence of influenza A virus variants after prolonged shedding from pheasants,” Journal of Virology, vol. 81, no. 8, pp. 4044–4051, 2007.
[58]
M. J. Hossain, D. Hickman, and D. R. Perez, “Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens,” PLoS ONE, vol. 3, no. 9, Article ID e3170, 2008, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525835/.
[59]
G. N. Rogers and B. L. D'Souza, “Receptor binding properties of human and animal H1 influenza virus isolates,” Virology, vol. 173, no. 1, pp. 317–322, 1989.
[60]
T. Ito, J. N. S. S. Couceiro, S. Kelm et al., “Molecular basis for the generation in pigs of influenza A viruses with pandemic potential,” Journal of Virology, vol. 72, no. 9, pp. 7367–7373, 1998.
[61]
J. M. Nicholls, A. J. Bourne, H. Chen, Y. Guan, and J. S. Peiris, “Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses,” Respiratory Research, vol. 8, no. 1, pp. 73–79, 2007.
[62]
H. Wan and D. R. Perez, “Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses,” Virology, vol. 346, no. 2, pp. 278–286, 2006.
[63]
K. Shinya, M. Ebina, S. Yamada, M. Ono, N. Kasai, and Y. Kawaoka, “Influenza virus receptors in the human airway,” Nature, vol. 440, no. 7083, pp. 435–436, 2006.
[64]
S. P. S. Pillai and C. W. Lee, “Species and age related differences in the type and distribution of influenza virus receptors in different tissues of chickens, ducks and turkeys,” Virology Journal, vol. 7, article 5, 2010, http://www.virologyj.com/content/7/1/5.
[65]
K. Romvary, “Invasiveness and persistence of human Hong-Kong influenza A virus variants in chickens,” Acta Microbiologica Academia Scientifica Hungarica, vol. 24, no. 1, pp. 71–78, 1977.
[66]
V. Y. Zhezmer and N. M. Zagibailo, “Results of experimental infection of chickens with influenza viruses of group A (H3N2),” Ecology of Viruses, vol. 2, no. 1, pp. 18–23, 1974.
[67]
R. G. Webster, M. Yakhno, and V. S. Hinshaw, “Intestinal influenza: replication and characterization of influenza viruses in ducks,” Virology, vol. 84, no. 2, pp. 268–278, 1978.
[68]
P. Halfmann, K. Wells, and Y. Kawaoka, “Human influenza A viral genes responsible for the restriction of its replication in duck intestine,” Virology, vol. 295, no. 2, pp. 250–255, 2002.
G. H. Lowery Jr., The Mammals of Louisiana and its Adjacent Waters, Louisiana State University Press, 1974.
[71]
J. O. Whitaker, The Audubon Society Field Guide to North American Mammals, Alfred A. Knopf, New York, NY, USA, 1988.
[72]
J. S. Hall, R. B. Minnis, T. A. Campbell et al., “Influenza exposure in United States feral swine populations,” Journal of Wildlife Diseases, vol. 44, no. 2, pp. 362–368, 2008.
[73]
A. A. Storey, J. M. Ramírez, D. Quiroz et al., “Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 25, pp. 10335–10339, 2007.
[74]
W. R. Davidson, H. W. Yoder, M. Brugh, and V. F. Nettles, “Serological monitoring of eastern wild turkeys for antibodies to Mycoplasma spp. and avian influenza viruses,” Journal of Wildlife Diseases, vol. 24, no. 2, pp. 348–355, 1988.
[75]
B. C. Easterday and K. V. Reeth, “Swine influenza,” in Disease of Swine, B. E. Straw, W. D'Allaire, L. Mengeling, and D. J. Taylor , Eds., pp. 277–290, Iowa State University Press, Ames, Iowa, USA, 8th edition, 1999.
[76]
W. Ma, K. M. Lager, A. L. Vincent, B. H. Janke, M. R. Gramer, and J. A. Richt, “The role of swine in the generation of novel influenza viruses,” Zoonoses and Public Health, vol. 56, no. 6-7, pp. 326–337, 2009.
[77]
J. C. Obenauar, J. Denson, P. K. Mehta et al., “Large-scale sequence analysis of avian influenza isolates,” Science, vol. 311, no. 5767, pp. 1576–1580, 2006.
[78]
D. L. Suarez, P. R. Woolcock, A. J. Bermudez, and D. A. Senne, “Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes,” Avian Diseases, vol. 46, no. 1, pp. 111–121, 2002.
[79]
M. Pantin-Jackwood, J. L. Wasilenko, E. Spackman, D. L. Suarez, and D. E. Swayne, “Susceptibility of turkeys to pandemic-H1N1 virus by reproductive tract insemination,” Virology Journal, vol. 7, pp. 27–33, 2010.
[80]
H. M. Yassine, M. Q. Al-Natour, C. W. Lee, and Y. M. Saif, “Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses,” Virology Journal, vol. 28, pp. 129–134, 2007.
[81]
V. S. Hinshaw, R. G. Webster, W. J. Bean, et al., “Swine influenza-like viruses in turkeys: potential source of virus for humans?” Science, vol. 220, no. 4593, pp. 206–208, 1983.
[82]
F. Guerra, “The earliest American epidemic: the influenza of 1493,” Social Science History, vol. 12, no. 3, pp. 305–325, 1988.
[83]
I. V. Kulikova, S. V. Drovetski, D. D. Gibson et al., “Phylogeography of the Mallard (Anas platyrhynchos): hybridization, dispersal, and lineage sorting contribute to complex geographic structure,” Auk, vol. 122, no. 3, pp. 949–965, 2005.
[84]
W. I. B. Beveridge, Influenza: The Great Plague, Heinemann, London, UK, 1977.
[85]
J. K. Taubenberger and D. M. Morens, “Pandemic influenza—including a risk assessment of H5N1,” Reviews of Science and Technology, vol. 28, no. 1, pp. 187–202, 2009.
[86]
E. Tognotti, “Influenza pandemics: a historical retrospect,” Journal of Infection in Developing Countries, vol. 3, no. 5, pp. 331–334, 1999.
[87]
W. R. Dowdle, “Influenza A virus recycling revisited,” Bulletin of the World Health Organization, vol. 77, no. 10, pp. 820–828, 1999.
[88]
J. N. Hays, Epidemics and Pandemics: Their Impact on Human History, ABC-CLIO, Santa Barbara, Calif, USA, 1938.
[89]
G. J. D. Smith, J. Bahl, D. Vijaykrishna et al., “Dating the emergence of pandemic influenza viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11709–11712, 2009.
[90]
Middle East Critical Care Assembly, “Influenza time line,” 2010, http://www.mecriticalcare.net/lectures.php.
[91]
D. F. Salem, “Fowl plague in Egypt,” World's Poultry Science Journal, vol. 2, no. 1, pp. 69–70, 1946.
[92]
W. G. Laver and R. G. Webster, “Studies on the origin of pandemic influenza: III. Evidence implicating duck and equine influenza viruses as possible progenitors of the Hong Kong strain of human influenza,” Virology, vol. 51, no. 2, pp. 383–391, 1973.
[93]
J. A. Kasel and R. B. Couch, “Experimental infection in man and horses with influenza A viruses,” Bulletin of the World Health Organization, vol. 41, no. 3–5, pp. 447–452, 1969.
[94]
ISIRV (International Society for Influenza and other Respiratory Viruses), “An overview,” in Proceedings of the The International Symposium on Neglected Influenza Viruses, Amelia Island, Fla, USA, February 2010.
D. K. Lvov, V. M. Zhdanov, F. Sadykhova, S. S. Yamnikova, V. A. Isachenko, and E. A. Vladimirtseva, “Isolation of a natural recombinant of influenza A virus (H1N3) from a sick child,” The Lancet, vol. 2, no. 8361, pp. 1246–1247, 1983.
[98]
J. M. Barry, “The site of origin of the 1918 influenza pandemic and its public health implications,” Journal of Translational Medicine, vol. 2, no. 1, pp. 3–7, 2004.
[99]
C. Hannoun, “La Grippe,” Ed Techniques EMC (Encyclopédie Médico-Chirurgicale), Maladies Infectieuses, 8-069-A-10, Documents de la Conférence de l'Institut Pasteur: La Grippe Espagnole de 1918, 1993.
[100]
A. H. Reid, T. G. Fanning, J. V. Hultin, and J. K. Taubenberger, “Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1651–1656, 1999.
[101]
D. Kobasa, S. M. Jones, K. Shinya et al., “Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus,” Nature, vol. 445, no. 7125, pp. 319–323, 2007.
[102]
C. Wintemitz, I. M. Wason, and F. P. McNamara, The Pathology of Influenza, Yale University Press, New Haven, Conn, USA, 1920.
[103]
R. B. Belshe, “The origins of pandemic influenza—lessons from the 1918 virus,” The New England Journal of Medicine, vol. 353, no. 21, pp. 2209–2211, 2005.
[104]
G. Vana and K. M. Westover, “Origin of the 1918 Spanish influenza virus: a comparative genomic analysis,” Molecular Phylogenetics and Evolution, vol. 47, no. 3, pp. 1100–1110, 2008.
[105]
M. Dos Reis, A. J. Hay, and R. A. Goldstein, “Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 “Spanish” influenza pandemic virus,” Journal of Molecular Evolution, vol. 69, no. 4, pp. 333–345, 2009.
[106]
M. J. Gibbs, J. S. Armstrong, and A. J. Gibbs, “The haemagglutinin gene, but not the neuraminidase gene, of “Spanish flu” was a recombinant,” Philosophical Transactions of the Royal Society B, vol. 356, no. 1416, pp. 1845–1855, 2001.
[107]
A. Srinivasan, K. Viswanathan, R. Raman et al., “Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 2800–2805, 2008.
[108]
T. M. Tumpey, T. R. Maines, N. Van Hoeven et al., “A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission,” Science, vol. 315, no. 5812, pp. 655–659, 2007.
[109]
J. K. Taubenberger and D. M. Morens, “1918 influenza: the mother of all pandemics,” Emerging Infectious Diseases, vol. 12, no. 1, pp. 15–22, 2006.
[110]
C. Viboud, M. Miller, D. Olson, et al., “Preliminary estimates of mortality and years of life lost associated with the 2009 A/H1N1 pandemic in the US and comparison with past influenza seasons,” PLoS Currents: Influenza, 2010, http://knol.google.com/k/preliminary-estimates-of-mortality-and-years-of-life-lost-associated-with-the#.
[111]
G. J. D. Smith, D. Vijaykrishna, J. Bahl et al., “Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic,” Nature, vol. 459, no. 7250, pp. 1122–1126, 2009.
[112]
A. J. Gibbs, J. S. Armstrong, and J. C. Downie, “From where did the 2009 “swine-origin” influenza A virus (H1N1) emerge?” Virology Journal, vol. 6, pp. 207–213, 2009.
[113]
A. P. Kendal, G. R. Noble, and W. R. Dowdle, “Swine influenza viruses isolated in 1976 from man and pig contain two coexisting subpopulations with antigenically distinguishable hemagglutinins,” Virology, vol. 82, no. 1, pp. 111–121, 1977.
[114]
G. W. Both, C. H. Shi, and E. D. Kilbourne, “Hemagglutinin of swine influenza virus: a single amino acid change pleiotropically affects viral antigenicity and replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 22, pp. 6996–7000, 1983.
[115]
A. H. Reid, T. G. Fanning, T. A. Janczewski, and J. K. Taubenberger, “Characterization of the 1918 “Spanish” influenza virus neuraminidase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6785–6790, 2000.
[116]
A. Altmüller, M. Kunerl, K. Müller, V. S. Hinshaw, W. M. Fitch, and C. Scholtissek, “Genetic relatedness of the nucleoprotein (NP) of recent swine, turkey, and human influenza A virus (H1N1) isolates,” Virus Research, vol. 22, no. 1, pp. 79–87, 1991.
[117]
J. Lessler, D. A. T. Cummings, S. Fishman, A. Vora, and D. S. Burke, “Transmissibility of swine flu at Fort Dix, 1976,” Journal of the Royal Society Interface, vol. 4, no. 15, pp. 755–762, 2007.
[118]
M. Goldfield, J. D. Bartley, and W. Pizzuti, “Influenza in New Jersey in 1976: isolations of influenza A/New Jersey/76 virus at Fort Dix,” Journal of Infectious Diseases, vol. 136, pp. S347–S355, 1977.
[119]
J. C. Gaydos, F. H. Top, R. A. Hodder, and P. K. Russell, “Swine influenza A outbreak, Fort Dix, New Jersey, 1976,” Emerging Infectious Diseases, vol. 12, no. 1, pp. 23–28, 2006.
[120]
S. M. Zimmer and D. S. Burke, “Historical perspective—emergence of influenza a (H1N1) viruses,” The New England Journal of Medicine, vol. 361, no. 3, pp. 279–285, 2009.
[121]
J. V. Kozlov, V. G. Gorbulev, and A. G. Kurmanova, “On the origin of the H1N1 (A/USSR/90/77) influenza virus,” Journal of General Virology, vol. 56, part 2, pp. 437–440, 1981.
[122]
D. Shoham, “Biotic-abiotic mechanisms for long-term preservation and reemergence of influenza type A virus genes,” Progress in Medical Virology, vol. 40, pp. 178–192, 1993.
[123]
C. R. Parrish and Y. Kawaoka, “The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses,” Annual Review of Microbiology, vol. 59, pp. 553–586, 2005.
[124]
Encyclopedia Britannica, Travel and Geography: Mongolia, 2010, http://www.britannica.com/EBchecked/topic/389335/Mongolia/27430/The-mountains#ref3946.
[125]
S. H. Newman, S. A. Iverson, J. Y. Takekawa et al., “Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern asia,” PLoS ONE, vol. 4, no. 5, Article ID e5729, 2009.
[126]
K. Ohishi, N. Kishida, A. Ninomiya, et al., “Antibodies to human-related H3 influenza A virus in Baikal seals (Phoca sibirica) and ringed seals (Phoca hispida) in Russia,” Microbiol Immunol, vol. 48, no. 11, pp. 905–909, 2004.
[127]
D. K. Lvov, “Influenza H1N1 outbreak in camels in Mongolia,” Viprosi Virusologii, vol. 27, no. 3, pp. 401–405, 1982.
[128]
S. S. Yamnikova, J. Mandler, Z. H. Bekh-Ochir et al., “A reassortant H1N1 influenza A virus caused fatal epizootics among camels in Mongolia,” Virology, vol. 197, no. 2, pp. 558–563, 1993.
[129]
D. Anchlan, S. Ludwig, P. Nymadawa, J. Mendsaikhan, and C. Scholtissek, “Previous H1N1 influenza A viruses circulating in the Mongolian population,” Archives of Virology, vol. 141, no. 8, pp. 1553–1569, 1996.
[130]
D. E. Swayne, M. Pantin-Jackwood, D. Kapczynski, E. Spackman, and D. L. Suarez, “Susceptibility of poultry to pandemic (H1N1) 2009 virus,” Emerging Infectious Diseases, vol. 15, no. 12, pp. 2061–2063, 2009.
[131]
B. Andral, D. Toquin, F. Madec et al., “Disease in turkeys associated with H1N1 influenza virus following an outbreak of the disease in pigs,” Veterinary Record, vol. 116, no. 23, pp. 617–618, 1985.
[132]
M. Pappaioanou, Infectious disease advances: influenza, avian influenza, 2007, http://www.sph.umn.edu/img/assets/25422/M_Pappaioanou.pdf.
[133]
C. W. Olsen, A. Karasin, and G. Erickson, “Characterization of a swine-like reassortant H1N2 influenza virus isolated from a wild duck in the United States,” Virus Research, vol. 93, no. 1, pp. 115–121, 2003.
[134]
M. A. Ramakrishnan, P. Wang, M. Abin et al., “Triple reassortant swine influenza A (H3N2) virus in waterfowl,” Emerging Infectious Diseases, vol. 16, no. 4, pp. 728–730, 2010.
[135]
V. S. Hinshaw, W. J. Bean, and J. Geraci, “Characterization of two influenza A viruses from a pilot whale,” Journal of Virology, vol. 58, no. 2, pp. 655–656, 1986.
[136]
J. A. Belser, C. B. Bridges, J. M. Katz, and T. M. Tumpey, “Past, present, and possible future human infection with influenza virus A subtype H7,” Emerging Infectious Diseases, vol. 15, no. 6, pp. 859–865, 2009.
[137]
L. Stubbs, “Fowl plague,” in Diseases of Poultry, H. E. Biester and L. H. Schwarte, Eds., pp. 813–822, Iowa State University Press, Ames, Iowa, USA, 5th edition, 1965.
[138]
W. Sch?fer, “Vergleichende sero-immunologische Untersuchungen über die viren der influenza und klassischen Geflügelpest,” Zeitschrift fur Naturforschung B, vol. 10, no. 1, pp. 81–91, 1955.
[139]
R. Harvey, A. C. R. Martin, M. Zambon, and W. S. Barclay, “Restrictions to the adaptation of influenza A virus H5 hemagglutinin to the human host,” Journal of Virology, vol. 78, no. 1, pp. 502–507, 2004.
[140]
H. Janga, D. Boltzc, K. Sturm-Ramirezc, et al., “Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14063–14068, 2009.
[141]
K. Sharshov, N. Silko, I. Sousloparov, A. Zaykovskaya, A. Shestopalov, and I. Drozdov, “Avian Influenza (H5N1) outbreak among wild birds, Russia, 2009,” Emerging Infectious Diseases, vol. 16, no. 2, pp. 349–351, 2010.
[142]
K. Okazaki, A. Takada, T. Ito et al., “Precursor genes of future pandemic influenza viruses are perpetuated in ducks nesting in Siberia,” Archives of Virology, vol. 145, no. 5, pp. 885–893, 2000.
[143]
M. Gilbert, P. Chaitaweesub, T. Parakamawongsa et al., “Free-grazing ducks and highly pathogenic avian influenza, Thailand,” Emerging Infectious Diseases, vol. 12, no. 2, pp. 227–234, 2006.
[144]
T. Songserm, R. Jam-On, N. Sae-Heng et al., “Domestic ducks and H5N1 influenza epidemic, Thailand,” Emerging Infectious Diseases, vol. 12, no. 4, pp. 575–581, 2006.
[145]
K. M. Sturm-Ramirez, D. J. Hulse-Post, E. A. Govorkova et al., “Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia?” Journal of Virology, vol. 79, no. 19, pp. 11269–11279, 2005.
[146]
Y. J. Lee, Y. K. Choi, Y. J. Kim et al., “Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea,” Emerging Infectious Diseases, vol. 14, no. 3, pp. 487–490, 2008.
[147]
M. Gilbert, X. Xiao, J. Domenech, J. Lubroth, V. Martin, and J. Slingenbergh, “Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5N1 virus,” Emerging Infectious Diseases, vol. 12, no. 11, pp. 1650–1656, 2006.
[148]
A. T. Peterson, B. W. Benz, and M. Pape?, “Highly pathogenic H5N1 avian influenza: entry pathways into North America via bird migration,” PLoS ONE, vol. 2, no. 2, article e261, 2007.
[149]
D. Shoham and S. O. Rogers, “Greenland as a plausible springboard for trans-Atlantic avian influenza spread,” Medical Hypotheses, vol. 67, no. 6, pp. 1460–1461, 2006.
[150]
E. J. Parmley, N. Bastien, T. F. Booth et al., “Wild bird influenza survey, Canada, 2005,” Emerging Infectious Diseases, vol. 14, no. 1, pp. 84–87, 2008.
[151]
P. S. Chen, F. T. Tsai, C. K. Lin et al., “Ambient influenza and avian influenza virus during dust storm days and background days,” Environmental Health Perspectives, vol. 118, no. 9, pp. 1211–1216, 2010.
[152]
H. Chen, G. Deng, Z. Li et al., “The evolution of H5N1 influenza viruses in ducks in southern China,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10452–10457, 2004.
[153]
Y. Li, Z. Lin, J. Shi et al., “Detection of Hong Kong 97-like H5N1 influenza viruses from eggs of Vietnamese waterfowl,” Archives of Virology, vol. 151, no. 18, pp. 1615–1624, 2006.
[154]
D. Shoham, “Viral pathogens of humans likely to be preserved in natural ice,” in Life in Ancient Ice, J. D. Castello and S. O. Rogers, Eds., pp. 208–226, Princeton University Press, 2005.
[155]
A. Gilsdorf, N. Boxall, V. Gasimov et al., “Two clusters of human infection with influenza A/H5N1 virus in the Republic of Azerbaijan,” Europe Surveillance, vol. 11, no. 5, pp. 122–126, 2006.
[156]
N. M. Ferguson, C. Fraser, C. A. Donnelly, A. C. Ghani, and R. M. Anderson, “Public health risk from the avian H5N1 influenza epidemic,” Science, vol. 304, no. 5673, pp. 968–969, 2004.
[157]
J. M. Katz, W. Lim, C. B. Bridges et al., “Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts,” Journal of Infectious Diseases, vol. 180, no. 6, pp. 1763–1770, 1999.
[158]
Y. Yang, M. E. Halloran, J. D. Sugimoto, and I. M. Longini Jr., “Detecting human-to-human transmission of avian influenza A (H5N1),” Emerging Infectious Diseases, vol. 13, no. 9, pp. 1348–1353, 2007.
[159]
“Indonesia dismisses report on human-to-human bird flu,” The China Post, 4 Sebtember 2007, http://www.chinapost.com.tw/asia/2007/09/04/121104/Indonesia-dismisses.htm.
[160]
H. Wang, Z. Feng, Y. Shu et al., “Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China,” The Lancet, vol. 371, no. 9622, pp. 1427–1434, 2008.
[161]
P. D. DeLay, H. L. Casey, and H. S. Tubiash, “Comparative study of fowl plague virus and a virus isolated from man,” Public Health Reports, vol. 82, no. 7, pp. 615–620, 1967.
[162]
R. A. M. Fouchier, P. M. Schneeberger, F. W. Rozendaal et al., “Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 5, pp. 1356–1361, 2004.
[163]
G. Koch and A. R. W. Elbers, “Outdoor ranging of poultry: a major risk factor for the introduction and development of High-Pathogenecity Avian Influenza,” Journal of Life Sciences, vol. 54, no. 2, pp. 179–194, 2006.
[164]
T. C. Harder and O. Werner, “Avian influenza,” in Influenza Report, B. S. Kamps, C. Hoffmann, and W. Preiser, Eds., 2006.
[165]
F. Shortridge, “Pandemic influenza—a blueprint for control at source,” Chinese Journal of Experimental Clinical Virology, vol. 3, no. 1, pp. 75–88, 1988.
[166]
T. Day, J. B. André, and A. Park, “The evolutionary emergence of pandemic influenza,” Proceedings of the Royal Society B, vol. 273, no. 1604, pp. 2945–2953, 2006.
[167]
N. M. Bouvier and A. C. Lowen, “Animal models for influenza virus pathogenesis and transmissibility,” Viruses, vol. 2, pp. 1530–1563, 2010.
[168]
Influenza Research Database—Details for A/arctic tern/Alaska/300/1975 virus, 2011, http://www.fludb.org/brc/fluSegmentDetails.do?ncbiGenomicAccession=CY015153&decorator=influenza.
[169]
S. Payungporn, P. C. Crawford, T. S. Kouo et al., “Influenza A virus (H3N8) in dogs with respiratory disease,” Emerging Infectious Diseases, vol. 14, no. 6, pp. 902–908, 2008.