全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

DOI: 10.1155/2012/124879

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary. 1. Introduction The emergence of Escherichia coli isolates with multiple antibiotic-resistant phenotypes, involving coresistance to four or more unrelated families of antibiotics, has been previously reported and is considered a serious health concern [1–3]. Antimicrobials are often used for therapy of infected humans and animals as well as for prophylaxis and growth promotion of food producing animals. Many findings suggest that inadequate selection and abuse of antimicrobials may lead to resistance in various bacteria and make the treatment of bacterial infections more difficult [4]. Antimicrobial agents can be found in sewage effluents, particularly in places where these drugs are extensively used, such as hospitals, pharmaceutical production plants, and around farms where animal feed contains these agents. It has been suggested that resistance in bacterial populations may spread from one ecosystem to another [5]. The wild dissemination of antimicrobial resistance among bacterial populations is an increasing problem worldwide. Antimicrobial resistance in E. coli has been reported worldwide. Treatment for E. coli infection has been increasingly complicated by the emergence of resistance to most first-line antimicrobial agents, including fluoroquinolones [6]. Sulfamethoxazole in combination with

References

[1]  R. R. Ariza, S. P. Cohen, N. Bachhawat, S. B. Levy, and B. Demple, “Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli,” Journal of Bacteriology, vol. 176, no. 1, pp. 143–148, 1994.
[2]  S. P. Cohen, L. M. McMurry, D. C. Hooper, J. S. Wolfson, and S. B. Levy, “Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction,” Antimicrobial Agents and Chemotherapy, vol. 33, no. 8, pp. 1318–1325, 1989.
[3]  C. Maynard, J. M. Fairbrother, S. Bekal et al., “Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 10, pp. 3214–3221, 2003.
[4]  M. Kolá?, K. Urbánek, and T. Látal, “Antibiotic selective pressure and development of bacterial resistance,” International Journal of Antimicrobial Agents, vol. 17, no. 5, pp. 357–363, 2001.
[5]  J. R. Johnson, M. R. Sannes, C. Croy et al., “Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004,” Emerging Infectious Diseases, vol. 13, no. 6, pp. 838–846, 2007.
[6]  M. Sabaté, G. Prats, E. Moreno, E. Ballesté, A. R. Blanch, and A. Andreu, “Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater,” Research in Microbiology, vol. 159, no. 4, pp. 288–293, 2008.
[7]  V. Perreten and P. Boerlin, “A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 3, pp. 1169–1172, 2003.
[8]  Q. Wang, X. Ruan, D. Wei et al., “Development of a serogroup-specific multiplex PCR assay to detect a set of Escherichia coli serogroups based on the identification of their O-antigen gene clusters,” Molecular and Cellular Probes, vol. 24, no. 5, pp. 286–290, 2010.
[9]  J. P. Nataro and J. B. Kaper, “Diarrheagenic Escherichia coli,” Clinical Microbiology Reviews, vol. 11, no. 1, pp. 142–201, 1998.
[10]  L. Feng, A. V. Perepelov, G. Zhao et al., “Structural and genetic evidence that the Escherichia coli O148 O antigen is the precursor of the Shigella dysenteriae 1 O antigen and identification of a glucosyltransferase gene,” Microbiology, vol. 153, no. 1, pp. 139–147, 2007.
[11]  J. Sambook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Lboratory Manual, Cold spring Harbor Laboratory Press, New York, NY, USA, 1989.
[12]  A. K. Bej, J. L. DiCesare, L. Haff, and R. M. Atlas, “Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid,” Applied and Environmental Microbiology, vol. 57, no. 4, pp. 1013–1017, 1991.
[13]  A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966.
[14]  CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 17th Informational Supplement. M100-S17, vol. 27, Clinical Laboratory standards Institute, Wayne, Pa, USA, 2007.
[15]  C. Levesque, L. Piche, C. Larose, and P. H. Roy, “PCR mapping of integrons reveals several novel combinations of resistance genes,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 1, pp. 185–191, 1995.
[16]  R. Sehgal, Y. Kumar, and S. Kumar, “Prevalence and geographical distribution of Escherichia coli O157 in India: a 10-year survey,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 4, pp. 380–383, 2008.
[17]  S. Perelle, F. Dilasser, J. Grout, and P. Fach, “Screening food raw materials for the presence of the world's most frequent clinical cases of Shiga toxin-encoding Escherichia coli O26, O103, O111, O145 and O157,” International Journal of Food Microbiology, vol. 113, no. 3, pp. 284–288, 2007.
[18]  C. Pérez, O. G. Gómez-Duarte, and M. L. Arias, “Diarrheagenic Escherichia coli in children from Costa Rica,” American Journal of Tropical Medicine and Hygiene, vol. 83, no. 2, pp. 292–297, 2010.
[19]  S. Kim, J. N. Jensen, D. S. Aga, and A. S. Weber, “Tetracycline as a selector for resistant bacteria in activated sludge,” Chemosphere, vol. 66, no. 9, pp. 1643–1651, 2007.
[20]  A. Al-Ahmad, F. D. Daschner, and K. Kümmerer, “Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria,” Archives of Environmental Contamination and Toxicology, vol. 37, no. 2, pp. 158–163, 1999.
[21]  A. Chandran, A. A. M. Hatha, S. Varghese, and K. M. Sheeja, “Prevalence of multiple drug resistant Escherichia coli serotypes in a tropical estuary, India,” Microbes and Environments, vol. 23, no. 2, pp. 153–158, 2008.
[22]  T. V. Nguyen, P. V. Le, C. H. Le, and A. Weintraub, “Antibiotic resistance in diarrheagenic Escherichia coli and Shigella strains isolated from children in Hanoi, Vietnam,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 816–819, 2005.
[23]  J. Ruiz, F. Marco, P. Goni et al., “High frequency of mutations at codon 83 of the gyrA gene of quinolone-resistant clinical isolates of Escherichia coli,” Journal of Antimicrobial Chemotherapy, vol. 36, no. 4, pp. 737–738, 1995.
[24]  M. Del Mar Tavío, J. Vila, J. Ruiz, J. Ruiz, A. M. Martín-Sánchez, and M. T. Jiménez De Anta, “Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates,” Journal of Antimicrobial Chemotherapy, vol. 44, no. 6, pp. 735–742, 1999.
[25]  J. Vila, J. Ruiz, F. Marco et al., “Association between double mutation in gyrA gene of ciprofloxacin- resistant clinical isolates of Escherichia coli and MICs,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 10, pp. 2477–2479, 1994.
[26]  F. M. Aarestrup, “Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals,” International Journal of Antimicrobial Agents, vol. 12, no. 4, pp. 279–285, 1999.
[27]  A. Mora, J. E. Blanco, M. Blanco et al., “Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157:H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain,” Research in Microbiology, vol. 156, no. 7, pp. 793–806, 2005.
[28]  G. D. Recchia and R. M. Hall, “Gene cassettes: a new class of mobile element,” Microbiology, vol. 141, no. 12, pp. 3015–3027, 1995.
[29]  P. Huovinen, L. Sundstrom, G. Swedberg, and O. Skold, “Trimethoprim and sulfonamide resistance,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 2, pp. 279–289, 1995.
[30]  P. A. White, C. J. McIver, and W. D. Rawlinson, “Integrons and gene cassettes in the Enterobacteriaceae,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 9, pp. 2658–2661, 2001.
[31]  R. Singh, C. M. Schroeder, J. Meng et al., “Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 216–219, 2005.
[32]  B. W. Shaheen, O. A. Oyarzabal, and D. M. Boothe, “The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US,” Veterinary Microbiology, vol. 144, no. 3-4, pp. 363–370, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413