全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Leprosy: An Overview of Pathophysiology

DOI: 10.1155/2012/181089

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae, a microorganism that has a predilection for the skin and nerves. The disease is clinically characterized by one or more of the three cardinal signs: hypopigmented or erythematous skin patches with definite loss of sensation, thickened peripheral nerves, and acid-fast bacilli detected on skin smears or biopsy material. M. leprae primarily infects Schwann cells in the peripheral nerves leading to nerve damage and the development of disabilities. Despite reduced prevalence of M. leprae infection in the endemic countries following implementation of multidrug therapy (MDT) program by WHO to treat leprosy, new case detection rates are still high-indicating active transmission. The susceptibility to the mycobacteria and the clinical course of the disease are attributed to the host immune response, which heralds the review of immunopathology of this complex disease. 1. Introduction Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae, a microorganism that has a predilection for the skin and nerves. Though nonfatal, leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The disease has been known to man since time immemorial. DNA taken from the shrouded remains of a man discovered in a tomb next to the old city of Jerusalem shows him to be the earliest human proven to have suffered from leprosy. The remains were dated by radiocarbon methods to 1–50 A.D. [1]. The disease probably originated in Egypt and other Middle Eastern countries as early as 2400 BCE. An apparent lack of knowledge about its treatment facilitated its spread throughout the world. Mycobacterium leprae, the causative agent of leprosy, was discovered by G. H. Armauer Hansen in Norway in 1873, making it the first bacterium to be identified as causing disease in humans [2, 3]. Over the past 20 years, the WHO implementation of MDT has rendered leprosy a less prevalent infection in 90% of its endemic countries with less than one case per 10,000 population. Though, it continues to be a public health problem in countries like Brazil, Congo, Madagascar, Mozambique, Nepal, and Tanzania [4]. 2. Mycobacterium leprae M. leprae, an acid-fast bacillus is a major human pathogen. In addition to humans, leprosy has been observed in nine-banded armadillo and three species of primates [5]. The bacterium can also be grown in the laboratory by injection into the footpads of mice [6]. Mycobacteria are known for their notoriously

References

[1]  DNA of Jesus-Era Shrouded Man in Jerusalem Reveals Earliest Case of Leprosy, 2009.
[2]  G. H. A. Hansen, “Investigations concerning the etiology of leprosy,” Norsk Magazin for L?gevidenskaben, vol. 4, pp. 1–88, 1874 (Norwegian).
[3]  L. M. Irgens, “The discovery of the leprosy bacillus,” Tidsskrift for den Norske Laegeforening, vol. 122, no. 7, pp. 708–709, 2002.
[4]  P. E. M. Fine, “Global leprosy statistics: a cause for pride, or frustration?” Leprosy Review, vol. 77, no. 4, pp. 295–297, 2006.
[5]  O. Rojas-Espinosa and M. L?vik, “Mycobacterium leprae and Mycobacterium lepraemurium infections in domestic and wild animals,” OIE Revue Scientifique et Technique, vol. 20, no. 1, pp. 219–251, 2001.
[6]  R. C. Hastings, T. P. Gillis, J. L. Krahenbuhl, and S. G. Franzblau, “Leprosy,” Clinical Microbiology Reviews, vol. 1, no. 3, pp. 330–348, 1988.
[7]  N. Rastogi, E. Legrand, and C. Sola, “The Mycobacteria: an introduction to nomenclature and pathogenesis,” OIE Revue Scientifique et Technique, vol. 20, no. 1, pp. 21–54, 2001.
[8]  M. C. Gutierrez, P. Supply, and R. Brosch, “Pathogenomics of mycobacteria,” Genome Dynamics, vol. 6, pp. 198–210, 2009.
[9]  S. T. Cole, K. Eiglmeier, J. Parkhill et al., “Massive gene decay in the leprosy bacillus,” Nature, vol. 409, no. 6823, pp. 1007–1011, 2001.
[10]  X. Y. Han, Y. H. Seo, K. C. Sizer et al., “A new Mycobacterium species causing diffuse lepromatous leprosy,” American Journal of Clinical Pathology, vol. 130, no. 6, pp. 856–864, 2008.
[11]  X. Y. Han, K. C. Sizer, E. J. Thompson et al., “Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis,” Journal of Bacteriology, vol. 191, no. 19, pp. 6067–6074, 2009.
[12]  A. Alter, A. Alca?s, L. Abel, and E. Schurr, “Leprosy as a genetic model for susceptibility to common infectious diseases,” Human Genetics, vol. 123, no. 3, pp. 227–235, 2008.
[13]  A. Alca?s, A. Alter, G. Antoni et al., “Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy,” Nature Genetics, vol. 39, no. 4, pp. 517–522, 2007.
[14]  A. R. Santos, P. N. Suffys, P. R. Vanderborght et al., “TNFα and IL-10 promoter polymorphisms in leprosy: association with disease susceptibility,” Journal of Infectious Diseases, vol. 186, no. 11, pp. 1687–1691, 2002.
[15]  M. T. Mira, A. Alcais, T. di Pietrantonio et al., “Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes,” Genes and Immunity, vol. 4, no. 1, pp. 67–73, 2003.
[16]  E. A. Misch, M. Macdonald, C. Ranjit et al., “Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction,” PLoS Neglected Tropical Diseases, vol. 2, no. 5, article e231, 2008.
[17]  C. C. Cardoso, A. C. Pereira, V. N. Brito-De-Souza et al., “IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians,” Human Genetics, vol. 128, no. 5, pp. 481–490, 2010.
[18]  M. T. Mira, A. Alca?s, H. Van Thuc et al., “Susceptibility to leprosy is associated with PARK2 and PACRG,” Nature, vol. 427, no. 6975, pp. 636–640, 2004.
[19]  W. R. Berrington, M. Macdonald, S. Khadge et al., “Common polymoiphisms in the NOD2 gene region are associated with leprosy and Its reactive states,” Journal of Infectious Diseases, vol. 201, no. 9, pp. 1422–1435, 2010.
[20]  What Is Leprosy?, THE MEDICAL NEWS-from News-Medical.Net. Latest Medical News and Research from Around the World, 2010.
[21]  G. Weddell and E. Palmer, “The pathogenesis of leprosy. An experimental approach,” Leprosy Review, vol. 34, pp. 57–61, 1963.
[22]  C. K. Job, J. Jayakumar, and M. Aschhoff, “Large numbers of Mycobacterium leprae are discharged from the intact skin of lepromatous patients; A preliminary report,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 67, no. 2, pp. 164–167, 1999.
[23]  C. C. Shepard, “Acid-fast bacilli in nasal excretions in leprosy, and results of inoculation of mice,” American Journal of Epidemiology, vol. 71, no. 2, pp. 147–157, 1960.
[24]  J. C. Pedley, “The nasal mucus in leprosy,” Leprosy Review, vol. 44, no. 1, pp. 33–35, 1973.
[25]  T. F. Davey and R. J. W. Rees, “The nasal discharge in leprosy: clinical and bacteriological aspects,” Leprosy Review, vol. 45, no. 2, pp. 121–134, 1974.
[26]  R. J. W. Rees and A. C. McDougall, “Airborne infection with Mycobacterium leprae in mice,” Journal of Medical Microbiology, vol. 10, no. 1, pp. 63–68, 1977.
[27]  S. Chehl, C. K. Job, and R. C. Hastings, “Transmission of leprosy in nude mice,” American Journal of Tropical Medicine and Hygiene, vol. 34, no. 6, pp. 1161–1166, 1985.
[28]  E. Montestruc and R. Berdonneau, “2 New cases of leprosy in infants in Martinique,” Bulletin de la Société de Pathologie Exotique et de ses Filiales, vol. 47, no. 6, pp. 781–783, 1954.
[29]  R. O. Pinheiro, J. De Souza Salles, E. N. Sarno, and E. P. Sampaio, “Mycobacterium leprae-host-cell interactions and genetic determinants in leprosy: an overview,” Future Microbiology, vol. 6, no. 2, pp. 217–230, 2011.
[30]  E. P. Sampaio, J. R. T. Caneshi, J. A. C. Nery et al., “Cellular immune response to Mycobacterium leprae infection in human immunodeficiency virus-infected individuals,” Infection and Immunity, vol. 63, no. 5, pp. 1848–1854, 1995.
[31]  J. A. C. Nery, E. P. Sampaio, M. C. G. Galhardo et al., “M. leprae-HIV co-infection: pattern of immune response in vivo and in vitro,” Indian Journal of Leprosy, vol. 72, no. 2, pp. 155–167, 2000.
[32]  E. N. Sarno, X. Illarramendi, J. A. Costa Nery et al., “HIV-M. leprae interaction: can HAART modify the course of leprosy?” Public Health Reports, vol. 123, no. 2, pp. 206–212, 2008.
[33]  P. D. Deps and D. N. J. Lockwood, “Leprosy occurring as immune reconstitution syndrome,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 10, pp. 966–968, 2008.
[34]  P. Couppié, V. Domergue, E. Clyti et al., “Increased incidence of leprosy following HAART initiation: a manifestation of the immune reconstitution disease,” AIDS, vol. 23, no. 12, pp. 1599–1600, 2009.
[35]  A. Rambukkana, G. Zanazzi, N. Tapinos, and J. L. Salzer, “Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells,” Science, vol. 296, no. 5569, pp. 927–931, 2002.
[36]  M. A. M. Marques, V. L. Ant?nio, E. N. Sarno, P. J. Brennan, and M. C. V. Pessolani, “Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells,” Journal of Medical Microbiology, vol. 50, no. 1, pp. 23–28, 2001.
[37]  V. Ng, G. Zanazzi, R. Timpl et al., “Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae,” Cell, vol. 103, no. 3, pp. 511–524, 2000.
[38]  A. Rambukkana, H. Yamada, G. Zanazzi et al., “Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae,” Science, vol. 282, no. 5396, pp. 2076–2079, 1998.
[39]  N. Tapinos, M. Ohnishi, and A. Rambukkana, “ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli,” Nature Medicine, vol. 12, no. 8, pp. 961–966, 2006.
[40]  L. S. Schlesinger and M. A. Horwitz, “Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-γ activation inhibits complement receptor function and phagocytosis of this bacterium,” Journal of Immunology, vol. 147, no. 6, pp. 1983–1994, 1991.
[41]  K. Prabhakaran, E. B. Harris, and B. Randhawa, “Regulation by protein kinase of phagocytosis of Mycobacterium leprae by macrophages,” Journal of Medical Microbiology, vol. 49, no. 4, pp. 339–342, 2000.
[42]  D. S. Ridley and W. H. Jopling, “Classification of leprosy according to immunity. A five-group system,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 34, no. 3, pp. 255–273, 1966.
[43]  WHO, “Chemotherapy of leprosy for control programmes,” World Health Organisation Technical Report Series, vol. 675, pp. 1–33, 1982.
[44]  T. T. Fajardo, “Indeterminate leprosy: a 3 year study, clinical observations,” International Journal of Leprosy, vol. 39, pp. 94–95, 1971.
[45]  T. T. Fajardo, “Indeterminate leprosy: a five year study, clinical observations,” International Journal of Leprosy, vol. 41, p. 576, 1973.
[46]  V. N. Sehgal, S. M. Tuli, and B. Dube, “Leprotic nerve abscesses in northern India,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 35, no. 1, pp. 60–64, 1967.
[47]  V. N. Sehgal and G. Srivastava, “Status of histoid leprosy—a clinical, bacteriological, histopathological and immunological appraisal,” Journal of Dermatology, vol. 14, no. 1, pp. 38–42, 1987.
[48]  W. C. Van Voorhis, G. Kaplan, and E. N. Sarno, “The cutaneous infiltrates of leprosy. Cellular characteristics and the predominant T-cell phenotypes,” New England Journal of Medicine, vol. 307, no. 26, pp. 1593–1597, 1982.
[49]  R. L. Modlin, F. M. Hofman, C. R. Taylor, and T. H. Rea, “T lymphocyte subsets in the skin lesions of patients with leprosy,” Journal of the American Academy of Dermatology, vol. 8, no. 2, pp. 182–189, 1983.
[50]  D. Wallach, B. Flageul, M. A. Bach, and F. Cottenot, “The cellular content of dermal leprous granulomas: an immuno-histological approach,” International Journal of Leprosy, vol. 52, no. 3, pp. 318–326, 1984.
[51]  C. Lienhardt and P. E. M. Fine, “Type 1 reaction, neuritis and disability in leprosy: what is the current epidemiological situation?” Leprosy Review, vol. 65, no. 1, pp. 9–33, 1994.
[52]  E. N. Sarno, G. E. Grau, L. M. M. Vieira, and J. A. Nery, “Serum levels of tumour necrosis factor-alpha and interleukin-1β during leprosy reactional states,” Clinical and Experimental Immunology, vol. 84, no. 1, pp. 103–108, 1991.
[53]  S. Khanolkar-Young, N. Rayment, P. M. Brickell et al., “Tumor necrosis factor-alpha (TNF-α) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions,” Clinical and Experimental Immunology, vol. 99, no. 2, pp. 196–202, 1995.
[54]  G. Bjune, R. S. Barnetson, D. S. Ridley, and G. Kronvall, “Lymphocyte transformation test in leprosy; correlation of the response with inflammation of lesions,” Clinical and Experimental Immunology, vol. 25, no. 1, pp. 85–94, 1976.
[55]  T. H. Rea and N. E. Levan, “Current concepts in the immunology of leprosy,” Archives of Dermatology, vol. 113, no. 3, pp. 345–352, 1977.
[56]  S. Khanolkar-Young, N. Rayment, P. M. Brickell et al., “Tumor necrosis factor-alpha (TNF-α) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions,” Clinical and Experimental Immunology, vol. 99, no. 2, pp. 196–202, 1995.
[57]  D. Little, S. Khanolkar-Young, A. Coulthart, S. Suneetha, and D. N. J. Lockwood, “Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin-12, and inducible nitric oxide synthase expression in leprosy type 1 (reversal) reactions before and during prednisolone treatment,” Infection and Immunity, vol. 69, no. 5, pp. 3413–3417, 2001.
[58]  M. M. Stefani, J. G. Guerra, A. L. M. Sousa et al., “Potential plasma markers of type 1 and type 2 leprosy reactions: a preliminary report,” BMC Infectious Diseases, vol. 9, article 75, 2009.
[59]  C. Massone, E. Nunzi, R. Ribeiro-Rodrigues et al., “T regulatory cells and plasmocytoid dentritic cells in hansen disease: a new insight into pathogenesis?” American Journal of Dermatopathology, vol. 32, no. 3, pp. 251–256, 2010.
[60]  B. Bjorvatn, R. S. Barnetson, and G. Kronvall, “Immune complexes and complement hypercatabolism in patients with leprosy,” Clinical and Experimental Immunology, vol. 26, no. 3, pp. 388–396, 1976.
[61]  P. Sreenivasan, R. S. Misra, D. Wilfred, and I. Nath, “Lepromatous leprosy patients show T helper 1-like cytokine profile with differential expression of interleukin-10 during type 1 and 2 reactions,” Immunology, vol. 95, no. 4, pp. 529–536, 1998.
[62]  I. Nath, N. Vemuri, A. L. Reddi et al., “The effect of antigen presenting cells on the cytokine profiles of stable and reactional lepromatous leprosy patients,” Immunology Letters, vol. 75, no. 1, pp. 69–76, 2000.
[63]  M. O. Moraes, E. P. Sampaio, J. A. C. Nery, B. C. C. Saraiva, F. B. F. Alvarenga, and E. N. Sarno, “Sequential erythema nodosum leprosum and reversal reaction with similar lesional cytokine mRNA patterns in a borderline leprosy patient,” British Journal of Dermatology, vol. 144, no. 1, pp. 175–181, 2001.
[64]  I. P. Kahawita and D. N. J. Lockwood, “Towards understanding the pathology of erythema nodosum leprosum,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 4, pp. 329–337, 2008.
[65]  D. J. Lee, H. Li, and M. T. Ochoa, “Integrated pathways for neutrophil recruitment and inflammation in leprosy,” Journal of Infectious Diseases, vol. 201, pp. 558–569, 2010.
[66]  P. F. Barnes, D. Chatterjee, P. J. Brennan, T. H. Rea, and R. L. Modlin, “Tumor necrosis factor production in patients with leprosy,” Infection and Immunity, vol. 60, no. 4, pp. 1441–1446, 1992.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133