Extracellular bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae, have been reported to induce autophagy; however, the role and machinery of infection-induced autophagy remain elusive. We show that the pleiotropic Src kinase Lyn mediates phagocytosis and autophagosome maturation in alveolar macrophages (AM), which facilitates eventual bacterial eradication. We report that Lyn is required for bacterial infection-induced recruitment of autophagic components to pathogen-containing phagosomes. When we blocked autophagy with 3-methyladenine (3-MA) or by depleting Lyn, we observed less phagocytosis and subsequent bacterial clearance by AM. Both morphological and biological evidence demonstrated that Lyn delivered bacteria to lysosomes through xenophagy. TLR2 initiated the phagocytic process and activated Lyn following infection. Cytoskeletal trafficking proteins, such as Rab5 and Rab7, critically facilitated early phagosome formation, autophagosome maturation, and eventual autophagy-mediated bacterial degradation. These findings reveal that Lyn, TLR2 and Rab modulate autophagy related phagocytosis and augment bactericidal activity, which may offer insight into novel therapeutic strategies to control lung infection.
References
[1]
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964. pmid:10984043
[2]
Lederman ER, Crum NF (2005) Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol 100: 322–331. pmid:15667489 doi: 10.1111/j.1572-0241.2005.40310.x
[3]
Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14: 81–93. doi: 10.1038/nri3600. pmid:24445666
[4]
Wang J, Li F, Sun R, Gao X, Wei H, et al. (2013) Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun 4: 2106. doi: 10.1038/ncomms3106. pmid:23820884
[5]
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445–544. pmid:22966490
[6]
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368: 1845–1846. doi: 10.1056/nejmra1205406
[7]
Fujita K, Maeda D, Xiao Q, Srinivasula SM (2011) Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc Natl Acad Sci U S A 108: 1427–1432. doi: 10.1073/pnas.1014156108. pmid:21220332
[8]
Yang CS, Lee JS, Rodgers M, Min CK, Lee JY, et al. (2012) Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 11: 264–276. doi: 10.1016/j.chom.2012.01.018. pmid:22423966
[9]
Blanchet FP, Piguet V (2010) Immunoamphisomes in dendritic cells amplify TLR signaling and enhance exogenous antigen presentation on MHC-II. Autophagy 6: 816–818. pmid:20595805 doi: 10.4161/auto.6.6.12623
[10]
Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, et al. (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7: 576–582. pmid:16648852 doi: 10.1038/ni1346
[11]
Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, et al. (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32: 329–341. doi: 10.1016/j.immuni.2010.02.009. pmid:20206555
[12]
Shibutani ST, Saitoh T, Nowag H, Munz C, Yoshimori T (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16: 1014–1024. doi: 10.1038/ni.3273. pmid:26382870
[13]
Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13: 722–737. doi: 10.1038/nri3532. pmid:24064518
[14]
Fitzer-Attas CJ, Lowry M, Crowley MT, Finn AJ, Meng F, et al. (2000) Fcgamma receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J Exp Med 191: 669–682. pmid:10684859 doi: 10.1084/jem.191.4.669
[15]
Paul R, Obermaier B, Van Ziffle J, Angele B, Pfister HW, et al. (2008) Myeloid Src kinases regulate phagocytosis and oxidative burst in pneumococcal meningitis by activating NADPH oxidase. J Leukoc Biol 84: 1141–1150. doi: 10.1189/jlb.0208118. pmid:18625913
[16]
Kannan S, Audet A, Huang H, Chen LJ, Wu M (2008) Cholesterol-Rich Membrane Rafts and Lyn Are Involved in Phagocytosis during Pseudomonas aeruginosa Infection. J Immunol 180: 2396–2408. pmid:18250449 doi: 10.4049/jimmunol.180.4.2396
[17]
Kannan S, Audet A, Knittel J, Mullegama S, Gao GF, et al. (2006) Src kinase Lyn is crucial for Pseudomonas aeruginosa internalization into lung cells. Eur J Immunol 36: 1739–1752. pmid:16791881 doi: 10.1002/eji.200635973
[18]
Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, et al. (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253–1257. pmid:18097414 doi: 10.1038/nature06421
[19]
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, et al. (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753–766. pmid:15607973 doi: 10.1016/j.cell.2004.11.038
[20]
Berger EA, McClellan SA, Vistisen KS, Hazlett LD (2013) HIF-1alpha is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis. PLoS Pathog 9: e1003457. doi: 10.1371/journal.ppat.1003457. pmid:23874197
[21]
Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, et al. (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17: 893–906. doi: 10.1038/ncb3192. pmid:26098576
[22]
Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, et al. (1998) Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood 91: 3734–3745. pmid:9573010
[23]
Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264–268. doi: 10.1038/nature07383. pmid:18849965
[24]
Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, et al. (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3: e111. pmid:17696608 doi: 10.1371/journal.ppat.0030111
[25]
Levine B (2007) Cell biology: autophagy and cancer. Nature 446: 745–747. pmid:17429391 doi: 10.1038/446745a
[26]
Schmid D, Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27: 11–21. pmid:17663981 doi: 10.1016/j.immuni.2007.07.004
[27]
Nairz M, Schleicher U, Schroll A, Sonnweber T, Theurl I, et al. (2013) Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J Exp Med 210: 855–873. doi: 10.1084/jem.20121946. pmid:23630227
[28]
Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, et al. (2013) Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39: 537–547. doi: 10.1016/j.immuni.2013.08.026. pmid:24035364
[29]
Li X, Ye Y, Zhou X, Huang C, Wu M (2015) Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. J Immunol 194: 1112–1121. doi: 10.4049/jimmunol.1401958. pmid:25535282
[30]
Yuan K, Huang C, Fox J, Laturnus D, Carlson E, et al. (2012) Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 125: 507–515. doi: 10.1242/jcs.094573. pmid:22302984
[31]
Kannan S, Huang H, Seeger D, Audet A, Chen Y, et al. (2009) Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection. PLoS One 4: e4891. doi: 10.1371/journal.pone.0004891. pmid:19305493
[32]
Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, et al. (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1–5. pmid:10384090
[33]
Khan AQ, Chen Q, Wu ZQ, Paton JC, Snapper CM (2005) Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll-like receptor 2. Infect Immun 73: 298–307. pmid:15618166 doi: 10.1128/iai.73.1.298-307.2005
[34]
Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, et al. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147: 868–880. doi: 10.1016/j.cell.2011.09.051. pmid:22078883
[35]
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451. pmid:10549626 doi: 10.1016/s1074-7613(00)80119-3
[36]
Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ, et al. (2013) Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340: 1230–1234. doi: 10.1126/science.1233632. pmid:23618765
[37]
Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, et al. (2010) Autophagy Blockade Sensitizes Prostate Cancer Cells towards Src Family Kinase Inhibitors. Genes Cancer 1: 40–49. doi: 10.1177/1947601909358324. pmid:20811583
[38]
Liu WM, Huang P, Kar N, Burgett M, Muller-Greven G, et al. (2013) Lyn Facilitates Glioblastoma Cell Survival under Conditions of Nutrient Deprivation by Promoting Autophagy. PLoS One 8: e70804. doi: 10.1371/journal.pone.0070804. pmid:23936469
[39]
Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA, et al. (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37: 35–47. doi: 10.1016/j.immuni.2012.05.001. pmid:22658523
[40]
Alonso S, Pethe K, Russell DG, Purdy GE (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A 104: 6031–6036. pmid:17389386 doi: 10.1073/pnas.0700036104
[41]
Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115: 4327–4339. pmid:12376564 doi: 10.1242/jcs.00117
[42]
Sarantis H, Balkin DM, De Camilli P, Isberg RR, Brumell JH, et al. (2012) Yersinia entry into host cells requires Rab5-dependent dephosphorylation of PI(4,5)P(2) and membrane scission. Cell Host Microbe 11: 117–128. doi: 10.1016/j.chom.2012.01.010. pmid:22341461
[43]
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, et al. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434. pmid:15866887 doi: 10.1083/jcb.200412022
[44]
Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8: 265–277. pmid:10621974 doi: 10.1023/a:1008942828960
[45]
Zhou X, Wang L, Hasegawa H, Amin P, Han BX, et al. (2010) Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci U S A 107: 9424–9429. doi: 10.1073/pnas.0914725107. pmid:20439739
[46]
Zhang D, Wu M, Nelson DE, Pasula R, Martin WJ 2nd (2003) Alpha-1-antitrypsin expression in the lung is increased by airway delivery of gene-transfected macrophages. Gene Ther 10: 2148–2152. pmid:14625570 doi: 10.1038/sj.gt.3302121
[47]
Li X, Zhou X, Ye Y, Li Y, Li J, et al. (2014) Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-kappaB pathway. Eur J Immunol 44: 763–773. doi: 10.1002/eji.201343972. pmid:24338528
[48]
Ojielo CI, Cooke K, Mancuso P, Standiford TJ, Olkiewicz KM, et al. (2003) Defective phagocytosis and clearance of Pseudomonas aeruginosa in the lung following bone marrow transplantation. J Immunol 171: 4416–4424. pmid:14530368 doi: 10.4049/jimmunol.171.8.4416
[49]
Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, et al. (2014) MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 5: 3619. doi: 10.1038/ncomms4619. pmid:24717937
[50]
Wu M, Pasula R, Smith PA, Martin WJ 2nd (2003) Mapping alveolar binding sites in vivo using phage peptide libraries. Gene Ther 10: 1429–1436. pmid:12900757 doi: 10.1038/sj.gt.3302009
[51]
Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, et al. (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425: 402–406. pmid:14508490 doi: 10.1038/nature01912
[52]
Yu L, Alva A, Su H, Dutt P, Freundt E, et al. (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502. pmid:15131264 doi: 10.1126/science.1096645