全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IL-17A Promotes Pulmonary B-1a Cell Differentiation via Induction of Blimp-1 Expression during Influenza Virus Infection

DOI: 10.1371/journal.ppat.1005367

Full-Text   Cite this paper   Add to My Lib

Abstract:

B-1 cells play a critical role in early protection during influenza infections by producing natural IgM antibodies. However, the underlying mechanisms involved in regulating this process are largely unknown. Here we found that during influenza infection pleural cavity B-1a cells rapidly infiltrated lungs, where they underwent plasmacytic differentiation with enhanced IgM production. This process was promoted by IL-17A signaling via induction of Blimp-1 expression and NF-κB activation in B-1a cells. Deficiency of IL-17A led to severely impaired B-1a-derived antibody production in the respiratory tract, resulting in a deficiency in viral clearance. Transfer of B-1a-derived natural antibodies rescued Il17a-/- mice from otherwise lethal infections. Together, we identify a critical function of IL-17A in promoting the plasmacytic differentiation of B-1a cells. Our findings provide new insights into the mechanisms underlying the regulation of pulmonary B-1a cell response against influenza infection.

References

[1]  Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K (1997) Role of the b-cell response in recovery of mice from primary influenza virus infection. Immunol Rev 159: 95–103. pmid:9416505 doi: 10.1111/j.1600-065x.1997.tb01009.x
[2]  Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, et al. (2000) B-1 and b-2 cell-derived immunoglobulin m antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192: 271–280. doi: 10.1084/jem.192.2.271
[3]  Choi YS, Baumgarth N (2008) Dual role for b-1a cells in immunity to influenza virus infection. J Exp Med 205: 3053–3064. doi: 10.1084/jem.20080979.
[4]  Jayasekera JP, Moseman EA, Carroll MC (2007) Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol 81: 3487–3494. doi: 10.1128/JVI.02128-06.
[5]  Hardy RR, Hayakawa K (1991) A developmental switch in b lymphopoiesis. Proc Natl Acad Sci U S A 88: 11550–11554. doi: 10.1073/pnas.88.24.11550
[6]  Martin F, Kearney JF (2001) B1 cells: Similarities and differences with other b cell subsets. Curr Opin Immunol 13: 195–201. pmid:11228413 doi: 10.1016/s0952-7915(00)00204-1
[7]  Bos NA, Kimura H, Meeuwsen CG, De Visser H, Hazenberg MP, et al. (1989) Serum immunoglobulin levels and naturally occurring antibodies against carbohydrate antigens in germ-free balb/c mice fed chemically defined ultrafiltered diet. Eur J Immunol 19: 2335–2339. doi: 10.1002/eji.1830191223. pmid:2606142
[8]  Haury M, Sundblad A, Grandien A, Barreau C, Coutinho A, et al. (1997) The repertoire of serum igm in normal mice is largely independent of external antigenic contact. Eur J Immunol 27: 1557–1563. doi: 10.1002/eji.1830270635. pmid:9209510
[9]  Hooijkaas H, Benner R, Pleasants JR, Wostmann BS (1984) Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered "antigen-free" diet. Eur J Immunol 14: 1127–1130. doi: 10.1002/eji.1830141212. pmid:6083871
[10]  Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: A key to immune defense against pathogen invasion. Springer Semin Immunopathol 26: 347–362. doi: 10.1007/s00281-004-0182-2. pmid:15633017
[11]  Bouvet JP, Dighiero G (1998) From natural polyreactive autoantibodies to a la carte monoreactive antibodies to infectious agents: Is it a small world after all? Infect Immun 66: 1–4.
[12]  Stall AM, Adams S, Herzenberg LA, Kantor AB (1992) Characteristics and development of the murine b-1b (ly-1 b sister) cell population. Ann N Y Acad Sci 651: 33–43. pmid:1376053 doi: 10.1111/j.1749-6632.1992.tb24591.x
[13]  Esplin BL, Welner RS, Zhang Q, Borghesi LA, Kincade PW (2009) A differentiation pathway for b1 cells in adult bone marrow. Proc Natl Acad Sci U S A 106: 5773–5778. doi: 10.1073/pnas.0811632106 2666989. pmid:19307589
[14]  Ghosn EE, Sadate-Ngatchou P, Yang Y, Herzenberg LA (2011) Distinct progenitors for b-1 and b-2 cells are present in adult mouse spleen. Proc Natl Acad Sci U S A 108: 2879–2884. doi: 10.1073/pnas.1019764108 3041118. pmid:21282663
[15]  Hayakawa K, Hardy RR, Honda M, Herzenberg LA, Steinberg AD, et al. (1984) Ly-1 b cells: Functionally distinct lymphocytes that secrete igm autoantibodies. Proc Natl Acad Sci U S A 81: 2494–2498. doi: 10.1073/pnas.81.8.2494
[16]  Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, et al. (2006) Regulation of b1 cell migration by signals through toll-like receptors. J Exp Med 203: 2541–2550. doi: 10.1084/jem.20061041.
[17]  Berberich S, Forster R, Pabst O (2007) The peritoneal micromilieu commits b cells to home to body cavities and the small intestine. Blood 109: 4627–4634. doi: 10.1182/blood-2006-12-064345. pmid:17289810
[18]  Baumgarth N, Herman OC, Jager GC, Brown L, Herzenberg LA (1999) Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A 96: 2250–2255. doi: 10.1073/pnas.96.5.2250
[19]  Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. (2005) A distinct lineage of cd4 t cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133–1141. doi: 10.1038/ni1261
[20]  Lai Kwan Lam Q, King Hung Ko O, Zheng BJ, Lu L (2008) Local baff gene silencing suppresses th17-cell generation and ameliorates autoimmune arthritis. Proc Natl Acad Sci U S A 105: 14993–14998. doi: 10.1073/pnas.0806044105.
[21]  Deng J, Liu Y, Yang M, Wang S, Zhang M, et al. (2012) Leptin exacerbates collagen-induced arthritis via enhancement of th17 cell response. Arthritis Rheum 64: 3564–3573. doi: 10.1002/art.34637. pmid:22833425
[22]  Dong C (2008) Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunol Rev 226: 80–86. doi: 10.1111/j.1600-065X.2008.00709.x.
[23]  Mitsdoerffer M, Lee Y, Jager A, Kim HJ, Korn T, et al. (2010) Proinflammatory t helper type 17 cells are effective b-cell helpers. Proc Natl Acad Sci U S A 107: 14292–14297. doi: 10.1073/pnas.1009234107.
[24]  Hsu HC, Yang P, Wang J, Wu Q, Myers R, et al. (2008) Interleukin 17-producing t helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune bxd2 mice. Nat Immunol 9: 166–175. doi: 10.1038/ni1552. pmid:18157131
[25]  Xie S, Li J, Wang JH, Wu Q, Yang P, et al. (2010) Il-17 activates the canonical nf-kappab signaling pathway in autoimmune b cells of bxd2 mice to upregulate the expression of regulators of g-protein signaling 16. J Immunol 184: 2289–2296. doi: 10.4049/jimmunol.0903133.
[26]  Taylor PR, Roy S, Leal SM Jr., Sun Y, Howell SJ, et al. (2014) Activation of neutrophils by autocrine il-17a-il-17rc interactions during fungal infection is regulated by il-6, il-23, rorgammat and dectin-2. Nat Immunol 15: 143–151. doi: 10.1038/ni.2797.
[27]  Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, et al. (2001) Requirement of interleukin 17 receptor signaling for lung cxc chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194: 519–527. doi: 10.1084/jem.194.4.519
[28]  Wang X, Chan CC, Yang M, Deng J, Poon VK, et al. (2011) A critical role of il-17 in modulating the b-cell response during h5n1 influenza virus infection. Cell Mol Immunol 8: 462–468. doi: 10.1038/cmi.2011.38. pmid:21946434
[29]  Briles DE, Forman C, Hudak S, Claflin JL (1982) Anti-phosphorylcholine antibodies of the t15 idiotype are optimally protective against streptococcus pneumoniae. J Exp Med 156: 1177–1185. doi: 10.1084/jem.156.4.1177
[30]  Masmoudi H, Mota-Santos T, Huetz F, Coutinho A, Cazenave PA (1990) All t15 id-positive antibodies (but not the majority of vht15+ antibodies) are produced by peritoneal cd5+ b lymphocytes. Int Immunol 2: 515–520. pmid:1707658 doi: 10.1093/intimm/2.6.515
[31]  Ansel KM, Harris RB, Cyster JG (2002) Cxcl13 is required for b1 cell homing, natural antibody production, and body cavity immunity. Immunity 16: 67–76. pmid:11825566 doi: 10.1016/s1074-7613(01)00257-6
[32]  Lalor PA, Herzenberg LA, Adams S, Stall AM (1989) Feedback regulation of murine ly-1 b cell development. Eur J Immunol 19: 507–513. doi: 10.1002/eji.1830190315. pmid:2785046
[33]  Yang Y, Ghosn EEB, Cole LE, Obukhanych TV, Sadate-Ngatchou P, et al. (2012) Antigen-specific antibody responses in b-1a and their relationship to natural immunity. Proc Natl Acad Sci U S A 109: 5382–5387. doi: 10.1073/pnas.1121631109.
[34]  Paciorkowski N, Porte P, Shultz LD, Rajan TV (2000) B1 b lymphocytes play a critical role in host protection against lymphatic filarial parasites. J Exp Med 191: 731–736. doi: 10.1084/jem.191.4.731
[35]  Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, et al. (2011) The development of inducible bronchus-associated lymphoid tissue depends on il-17. Nat Immunol 12: 639–646. doi: 10.1038/ni.2053. pmid:21666689
[36]  Amezcua Vesely MC, Schwartz M, Bermejo DA, Montes CL, Cautivo KM, et al. (2012) Fcgammariib and baff differentially regulate peritoneal b1 cell survival. J Immunol 188: 4792–4800. doi: 10.4049/jimmunol.1102070
[37]  Wang J, Li F, Wei H, Lian ZX, Sun R, et al. (2014) Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated th17 cell-dependent inflammation. J Exp Med doi: 10.1084/jem.20140625. 10.1084/jem.20140625
[38]  Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, et al. (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488: 675–679. doi: 10.1038/nature11337. pmid:22914092
[39]  Won WJ, Kearney JF (2002) Cd9 is a unique marker for marginal zone b cells, b1 cells, and plasma cells in mice. J Immunol 168: 5605–5611. pmid:12023357 doi: 10.4049/jimmunol.168.11.5605
[40]  Fagarasan S, Watanabe N, Honjo T (2000) Generation, expansion, migration and activation of mouse b1 cells. Immunol Rev 176: 205–215. pmid:11043779 doi: 10.1034/j.1600-065x.2000.00604.x
[41]  Oliveira FL, Chammas R, Ricon L, Fermino ML, Bernardes ES, et al. (2009) Galectin-3 regulates peritoneal b1-cell differentiation into plasma cells. Glycobiology 19: 1248–1258. doi: 10.1093/glycob/cwp120. pmid:19696234
[42]  Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, et al. (2004) B1b lymphocytes confer t cell-independent long-lasting immunity. Immunity 21: 379–390. doi: 10.1016/j.immuni.2004.06.019. pmid:15357949
[43]  Fagarasan S, Honjo T (2000) T-independent immune response: New aspects of b cell biology. Science 290: 89–92. pmid:11021805 doi: 10.1126/science.290.5489.89
[44]  Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, et al. (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory b cells. Immunity 19: 607–620. pmid:14563324 doi: 10.1016/s1074-7613(03)00267-x
[45]  Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, et al. (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature b cell gene expression program. Immunity 17: 51–62. pmid:12150891 doi: 10.1016/s1074-7613(02)00335-7
[46]  Knodel M, Kuss AW, Berberich I, Schimpl A (2001) Blimp-1 over-expression abrogates il-4- and cd40-mediated suppression of terminal b cell differentiation but arrests isotype switching. Eur J Immunol 31: 1972–1980. pmid:11449349 doi: 10.1002/1521-4141(200107)31:7<1972::aid-immu1972>3.3.co;2-k
[47]  Turner CA Jr., Mack DH, Davis MM (1994) Blimp-1, a novel zinc finger-containing protein that can drive the maturation of b lymphocytes into immunoglobulin-secreting cells. Cell 77: 297–306. pmid:8168136 doi: 10.1016/0092-8674(94)90321-2
[48]  Fairfax KA, Corcoran LM, Pridans C, Huntington ND, Kallies A, et al. (2007) Different kinetics of blimp-1 induction in b cell subsets revealed by reporter gene. J Immunol 178: 4104–4111. pmid:17371965 doi: 10.4049/jimmunol.178.7.4104
[49]  Savitsky D, Calame K (2006) B-1 b lymphocytes require blimp-1 for immunoglobulin secretion. J Exp Med 203: 2305–2314. doi: 10.1084/jem.20060411.
[50]  Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein nf-kappa b by a posttranslational mechanism. Cell 47: 921–928. pmid:3096580 doi: 10.1016/0092-8674(86)90807-x
[51]  Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, et al. (1996) Inhibition of nf-kappab/rel induces apoptosis of murine b cells. EMBO J 15: 4682–4690.
[52]  Bellas RE, FitzGerald MJ, Fausto N, Sonenshein GE (1997) Inhibition of nf-kappa b activity induces apoptosis in murine hepatocytes. Am J Pathol 151: 891–896.
[53]  Snapper CM, Zelazowski P, Rosas FR, Kehry MR, Tian M, et al. (1996) B cells from p50/nf-kappa b knockout mice have selective defects in proliferation, differentiation, germ-line ch transcription, and ig class switching. J Immunol 156: 183–191. pmid:8598461
[54]  Wong SC, Chew WK, Tan JE, Melendez AJ, Francis F, et al. (2002) Peritoneal cd5+ b-1 cells have signaling properties similar to tolerant b cells. J Biol Chem 277: 30707–30715. doi: 10.1074/jbc.M202460200. pmid:12070149
[55]  Karras JG, Wang Z, Huo L, Howard RG, Frank DA, et al. (1997) Signal transducer and activator of transcription-3 (stat3) is constitutively activated in normal, self-renewing b-1 cells but only inducibly expressed in conventional b lymphocytes. J Exp Med 185: 1035–1042. doi: 10.1084/jem.185.6.1035
[56]  Holodick NE, Tumang JR, Rothstein TL (2009) Continual signaling is responsible for constitutive erk phosphorylation in b-1a cells. Mol Immunol 46: 3029–3036. doi: 10.1016/j.molimm.2009.06.011.
[57]  Pettersson M, Schaffner W (1990) Synergistic activation of transcription by multiple binding sites for nf-kappa b even in absence of co-operative factor binding to DNA. J Mol Biol 214: 373–380. pmid:2199680 doi: 10.1016/0022-2836(90)90187-q
[58]  Morgan MA, Magnusdottir E, Kuo TC, Tunyaplin C, Harper J, et al. (2009) Blimp-1/prdm1 alternative promoter usage during mouse development and plasma cell differentiation. Mol Cell Biol 29: 5813–5827. doi: 10.1128/MCB.00670-09.
[59]  Yasuda T, Hayakawa F, Kurahashi S, Sugimoto K, Minami Y, et al. (2012) B cell receptor-erk1/2 signal cancels pax5-dependent repression of blimp1 through pax5 phosphorylation: A mechanism of antigen-triggering plasma cell differentiation. J Immunol 188: 6127–6134. doi: 10.4049/jimmunol.1103039. pmid:22593617
[60]  Crane DD, Griffin AJ, Wehrly TD, Bosio CM (2013) B1a cells enhance susceptibility to infection with virulent francisella tularensis via modulation of nk/nkt cell responses. J Immunol 190: 2756–2766. doi: 10.4049/jimmunol.1202697.
[61]  Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, et al. (2002) Antigen-specific t cell sensitization is impaired in il-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17: 375–387. pmid:12354389 doi: 10.1016/s1074-7613(02)00391-6
[62]  Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, et al. (2008) Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza a/h5n1 virus. Proc Natl Acad Sci U S A 105: 8091–8096. doi: 10.1073/pnas.0711942105.
[63]  Reed LJ M H. (1938) A simple method of estimating fifty percent endpoints. The American Journal of Hygiene 27: 493–497.
[64]  Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, et al. (2009) Critical role of il-17ra in immunopathology of influenza infection. J Immunol 183: 5301–5310. doi: 10.4049/jimmunol.0900995. pmid:19783685
[65]  Sun S, Zhao G, Xiao W, Hu J, Guo Y, et al. (2011) Age-related sensitivity and pathological differences in infections by 2009 pandemic influenza a (h1n1) virus. Virol J 8: 52. doi: 10.1186/1743-422X-8-52. pmid:21299904
[66]  van den Brand JM, Stittelaar KJ, van Amerongen G, Rimmelzwaan GF, Simon J, et al. Severity of pneumonia due to new h1n1 influenza virus in ferrets is intermediate between that due to seasonal h1n1 virus and highly pathogenic avian influenza h5n1 virus. J Infect Dis 201: 993–999. doi: 10.1086/651132. pmid:20187747
[67]  Sauer KA, Scholtes P, Karwot R, Finotto S (2006) Isolation of cd4+ t cells from murine lungs: A method to analyze ongoing immune responses in the lung. Nat Protoc 1: 2870–2875. doi: 10.1038/nprot.2006.435. pmid:17406546

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133