全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome

DOI: 10.1371/journal.ppat.1005375

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most West Nile virus (WNV) infections are asymptomatic, but some lead to neuroinvasive disease with symptoms ranging from disorientation to paralysis and death. Evidence from animal models suggests that neuroinvasive infections may arise as a consequence of impaired immune protection. However, other data suggest that neurologic symptoms may arise as a consequence of immune mediated damage. We demonstrate that elevated immune responses are present in neuroinvasive disease by directly characterizing WNV-specific T cells in subjects with laboratory documented infections using human histocompatibility leukocyte antigen (HLA) class II tetramers. Subjects with neuroinvasive infections had higher overall numbers of WNV-specific T cells than those with asymptomatic infections. Independent of this, we also observed age related increases in WNV-specific T cell responses. Further analysis revealed that WNV-specific T cell responses included a population of atypically polarized CXCR3+CCR4+CCR6- T cells, whose presence was highly correlated with neuroinvasive disease. Moreover, a higher proportion of WNV-specific T cells in these subjects co-produced interferon-γ and interleukin 4 than those from asymptomatic subjects. More globally, subjects with neuroinvasive infections had reduced numbers of CD4+FoxP3+ Tregs that were CTLA4 positive and exhibited a distinct upregulated transcript profile that was absent in subjects with asymptomatic infections. Thus, subjects with neuroinvasive WNV infections exhibited elevated, dysregulated, and atypically polarized responses, suggesting that immune mediated damage may indeed contribute to pathogenic outcomes.

References

[1]  Petersen LR, Carson PJ, Biggerstaff BJ, Custer B, Borchardt SM, Busch MP. Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010. Epidemiol Infect. 2013;141(3):591–5. S0950268812001070 [pii]; doi: 10.1017/S0950268812001070. pmid:22640592
[2]  Gould LH, Fikrig E. West Nile virus: a growing concern? J Clin Invest. 2004;113(8):1102–7. doi: 10.1172/JCI21623. pmid:15085186
[3]  Hubalek Z, Halouzka J. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5(5):643–50. doi: 10.3201/eid0505.990505. pmid:10511520
[4]  Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol. 2006;80(19):9349–60. 80/19/9349 [pii]; doi: 10.1128/JVI.01122-06. pmid:16973541
[5]  Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol. 2008;181(12):8568–75. 181/12/8568 [pii]. pmid:19050276 doi: 10.4049/jimmunol.181.12.8568
[6]  Sitati EM, Diamond MS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol. 2006;80(24):12060–9. JVI.01650-06 [pii]; doi: 10.1128/JVI.01650-06. pmid:17035323
[7]  Lanteri MC, Diamond MS, Law JP, Chew GM, Wu S, Inglis HC, et al. Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection. PLoS One. 2014;9(3):e92134. doi: 10.1371/journal.pone.0092134. ;PONE-D-13-53257 [pii]. pmid:24642562
[8]  Leis AA, Stokic DS. Neuromuscular manifestations of west nile virus infection. Front Neurol. 2012;3:37. doi: 10.3389/fneur.2012.00037. pmid:22461779
[9]  Licon Luna RM, Lee E, Mullbacher A, Blanden RV, Langman R, Lobigs M. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol. 2002;76(7):3202–11. pmid:11884544 doi: 10.1128/jvi.76.7.3202-3211.2002
[10]  Lanteri MC, O'Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119(11):3266–77. 39387 [pii]; doi: 10.1172/JCI39387. pmid:19855131
[11]  Netland J, Bevan MJ. CD8 and CD4 T cells in west nile virus immunity and pathogenesis. Viruses. 2013;5(10):2573–84. v5102573 [pii]; doi: 10.3390/v5102573. pmid:24153060
[12]  Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med. 2006;57:181–94. doi: 10.1146/annurev.med.57.121304.131418. pmid:16409144
[13]  Becattini S, Latorre D, Mele F, Foglierini M, De GC, Cassotta A, et al. T cell immunity. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science. 2015;347(6220):400–6. science.1260668 [pii]; doi: 10.1126/science.1260668. pmid:25477212
[14]  Carson PJ, Borchardt SM, Custer B, Prince HE, Dunn-Williams J, Winkelman V, et al. Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999–2008. Emerg Infect Dis. 2012;18(4):684–6. doi: 10.3201/eid1804.111313. pmid:22469465
[15]  Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L, et al. Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest. 2001;108(9):1331–9. doi: 10.1172/JCI13543. pmid:11696578
[16]  Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J Clin Invest. 2014;124(8):3431–42. 75250 [pii]; doi: 10.1172/JCI75250. pmid:24960164
[17]  Ichii H, Sakamoto A, Arima M, Hatano M, Kuroda Y, Tokuhisa T. Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int Immunol. 2007;19(4):427–33. dxm007 [pii]; doi: 10.1093/intimm/dxm007. pmid:17307796
[18]  Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS. Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem. 2004;279(22):23214–22. doi: 10.1074/jbc.M402125200. [pii]. pmid:15054093
[19]  Ness TL, Ewing JL, Hogaboam CM, Kunkel SL. CCR4 is a key modulator of innate immune responses. J Immunol. 2006;177(11):7531–9. 177/11/7531 [pii]. pmid:17114422 doi: 10.4049/jimmunol.177.11.7531
[20]  Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. doi: 10.1016/j.immuni.2009.04.010 pmid:19464986.
[21]  Brien JD, Uhrlaub JL, Hirsch A, Wiley CA, Nikolich-Zugich J. Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med. 2009;206(12):2735–45. jem.20090222 [pii]; doi: 10.1084/jem.20090222. pmid:19901080
[22]  Han YW, Singh SK, Eo SK. The Roles and Perspectives of Toll-Like Receptors and CD4(+) Helper T Cell Subsets in Acute Viral Encephalitis. Immune Netw. 2012;12(2):48–57. doi: 10.4110/in.2012.12.2.48. pmid:22740790
[23]  Bigham AW, Buckingham KJ, Husain S, Emond MJ, Bofferding KM, Gildersleeve H, et al. Host genetic risk factors for West Nile virus infection and disease progression. PLoS One. 2011;6(9):e24745. doi: 10.1371/journal.pone.0024745. ;PONE-D-11-09427 [pii]. pmid:21935451
[24]  James EA, LaFond RE, Gates TJ, Mai DT, Malhotra U, Kwok WW. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J Virol. 2013;87(23):12794–804. JVI.01160-13 [pii]; doi: 10.1128/JVI.01160-13. pmid:24049183
[25]  Jung KO, Khan AM, Tan BY, Hu Y, Simon GG, Nascimento EJ, et al. West Nile virus T-cell ligand sequences shared with other flaviviruses: a multitude of variant sequences as potential altered peptide ligands. J Virol. 2012;86(14):7616–24. JVI.00166-12 [pii]; doi: 10.1128/JVI.00166-12. pmid:22573867
[26]  Kawamata T, Ohno N, Sato K, Kobayashi M, Jo N, Yuji K, et al. A case of post-transplant adult T-cell leukemia/lymphoma presenting myelopathy similar to but distinct from human T-cell leukemia virus type I (HTLV- I)-associated myelopathy. Springerplus. 2014;3:581. doi: 10.1186/2193-1801-3-581. ;1291 [pii]. pmid:25332881
[27]  Graham JB, Da CA, Lund JM. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J Immunol. 2014;192(2):683–90. jimmunol.1202153 [pii]; doi: 10.4049/jimmunol.1202153. pmid:24337378
[28]  Qian F, Thakar J, Yuan X, Nolan M, Murray KO, Lee WT, et al. Immune markers associated with host susceptibility to infection with West Nile virus. Viral Immunol. 2014;27(2):39–47. doi: 10.1089/vim.2013.0074. pmid:24605787
[29]  Garcia MN, Hause AM, Walker CM, Orange JS, Hasbun R, Murray KO. Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines. Viral Immunol. 2014;27(7):327–33. doi: 10.1089/vim.2014.0035. pmid:25062274
[30]  Piazza P, McMurtrey CP, Lelic A, Cook RL, Hess R, Yablonsky E, et al. Surface phenotype and functionality of WNV specific T cells differ with age and disease severity. PLoS One. 2010;5(12):e15343. doi: 10.1371/journal.pone.0015343. pmid:21179445
[31]  Gibson L, Barysauskas CM, McManus M, Dooley S, Lilleri D, Fisher D, et al. Reduced Frequencies of Polyfunctional CMV-Specific T Cell Responses in Infants with Congenital CMV Infection. J Clin Immunol. 2015;35(3):289–301. doi: 10.1007/s10875-015-0139-3. pmid:25712611
[32]  Kumar D, Drebot MA, Wong SJ, Lim G, Artsob H, Buck P, et al. A seroprevalence study of west nile virus infection in solid organ transplant recipients. Am J Transplant. 2004;4(11):1883–8. AJT592 [pii]; doi: 10.1111/j.1600-6143.2004.00592.x. pmid:15476490
[33]  Lanteri MC, Lee TH, Wen L, Kaidarova Z, Bravo MD, Kiely NE, et al. West Nile virus nucleic acid persistence in whole blood months after clearance in plasma: implication for transfusion and transplantation safety. Transfusion. 2014;54(12):3232–41. doi: 10.1111/trf.12764. pmid:24965017
[34]  Murray K, Walker C, Herrington E, Lewis JA, McCormick J, Beasley DW, et al. Persistent infection with West Nile virus years after initial infection. J Infect Dis. 2010;201(1):2–4. doi: 10.1086/648731. pmid:19961306
[35]  Stewart BS, Demarest VL, Wong SJ, Green S, Bernard KA. Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection. BMC Immunol. 2011;12:6. 1471-2172-12-6 [pii]; doi: 10.1186/1471-2172-12-6. pmid:21251256
[36]  Sejvar JJ. The long-term outcomes of human West Nile virus infection. Clin Infect Dis. 2007;44(12):1617–24. CID50140 [pii]; doi: 10.1086/518281. pmid:17516407
[37]  Busch MP, Tobler LH, Saldanha J, Caglioti S, Shyamala V, Linnen JM, et al. Analytical and clinical sensitivity of West Nile virus RNA screening and supplemental assays available in 2003. Transfusion. 2005;45(4):492–9. doi: 10.1111/j.0041-1132.2005.04382.x pmid:15819668.
[38]  Novak EJ, Liu AW, Nepom GT, Kwok WW. MHC class II tetramers identify peptide-specific human CD4(+) T cells proliferating in response to influenza A antigen. J Clin Invest. 1999;104(12):R63–R7. doi: 10.1172/JCI8476. pmid:10606632
[39]  Novak EJ, Liu AW, Gebe JA, Falk BA, Nepom GT, Koelle DM, et al. Tetramer-guided epitope mapping: rapid identification and characterization of immunodominant CD4+ T cell epitopes from complex antigens. J Immunol. 2001;166(11):6665–70. pmid:11359821 doi: 10.4049/jimmunol.166.11.6665
[40]  Kwok WW, Roti M, Delong JH, Tan V, Wambre E, James EA, et al. Direct ex vivo analysis of allergen-specific CD4+ T cells. J Allergy Clin Immunol. 2010;125(6):1407–9. S0091-6749(10)00583-X [pii]; doi: 10.1016/j.jaci.2010.03.037. pmid:20513526
[41]  WN V, DM S, Team RC. An Introduction to R. R Foundation for Statistical Computing Vienna, Austria: The R Project for Statistical Computing; 2015 [updated 1/1/2015]. 40–5]. Available from: .
[42]  Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008;9(2):321–32. kxm030 [pii]; doi: 10.1093/biostatistics/kxm030. pmid:17728317
[43]  Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007;23(21):2881–7. btm453 [pii]; doi: 10.1093/bioinformatics/btm453. pmid:17881408
[44]  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. btp616 [pii]; doi: 10.1093/bioinformatics/btp616. pmid:19910308
[45]  Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. gb-2010-11-3-r25 [pii]; doi: 10.1186/gb-2010-11-3-r25. pmid:20196867
[46]  McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–97. gks042 [pii]; doi: 10.1093/nar/gks042. pmid:22287627

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133