全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence

DOI: 10.1371/journal.ppat.1005359

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to “sense” levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

References

[1]  Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123–140. doi: 10.1038/nrmicro818. pmid:15040260
[2]  Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5: e1000344. doi: 10.1371/journal.pgen.1000344. pmid:19165319
[3]  Van Elsas JD, Semenov A V, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5: 173–183. doi: 10.1038/ismej.2010.80. pmid:20574458
[4]  Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, et al. (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26: 822–880. doi: 10.1128/CMR.00022-13. pmid:24092857
[5]  Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8: 26–38. doi: 10.1038/nrmicro2265. pmid:19966814
[6]  Totsika M, Gomes Moriel D, Idris A, A . Rogers B, J . Wurpel D, et al. (2012) Uropathogenic Escherichia coli mediated urinary tract infection. Curr Drug Targets 13: 1386–1399. doi: 10.2174/138945012803530206. pmid:22664092
[7]  Wiles TJ, Kulesus RR, Mulvey MA (2009) Origins and Virulence Mechanisms of Uropathogenic Escherichia coli. Exp Mol Pathol 85: 11–19. doi: 10.1016/j.yexmp.2008.03.007.Origins.
[8]  Tchesnokova V, Aprikian P, Kisiela D, Gowey S, Korotkova N, et al. (2011) Type 1 Fimbrial Adhesin FimH Elicits an Immune Response That Enhances Cell Adhesion of Escherichia coli. Infect Immun 79: 3895–3904. doi: 10.1128/IAI.05169-11. pmid:21768279
[9]  Connolly JPR, Finlay BB, Roe AJ (2015) From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol 6: 568. doi: 10.3389/fmicb.2015.00568. pmid:26097473
[10]  Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, et al. (2003) Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71: 1505–1512. doi: 10.1128/IAI.71.3.1505–1512.2003. pmid:12595469
[11]  Pruimboom-Brees IM, Morgan TW, Ackermann MR, Nystrom ED, Samuel JE, et al. (2000) Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc Natl Acad Sci U S A 97: 10325–10329. doi: 10.1073/pnas.190329997. pmid:10973498
[12]  Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, et al. (2012) Fucose sensing regulates bacterial intestinal colonization. Nature 492: 113–117. doi: 10.1038/nature11623. pmid:23160491
[13]  Kendall MM, Gruber CC, Parker CT, Sperandio V (2012) Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. MBio 3: e00050–12. doi: 10.1128/mBio.00050-12. pmid:22589288
[14]  Yang B, Feng L, Wang F, Wang L (2015) Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun 6: 6592. doi: 10.1038/ncomms7592. pmid:25791315
[15]  McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92: 1664–1668. doi: 10.1073/pnas.92.5.1664. pmid:7878036
[16]  Elliott SJ, Wainwright LA, Timothy K, Jarvis KG, Deng Y, et al. (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia. Mol Microbiol 28: 1–4. pmid:9593291 doi: 10.1046/j.1365-2958.1998.00783.x
[17]  Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB (1999) The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33: 296–306. pmid:10411746 doi: 10.1046/j.1365-2958.1999.01473.x
[18]  Haack KR, Robinson CL, Miller KJ, Fowlkes JW, Mellies JL (2003) Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect Immun 71: 384–392. pmid:12496188 doi: 10.1128/iai.71.1.384-392.2003
[19]  Sánchez-SanMartín C, Bustamante VH, Calva E, Puente JL (2001) Transcriptional regulation of the orf19 gene and the tir-cesT-eae operon of enteropathogenic Escherichia coli. J Bacteriol 183: 2823–2833. doi: 10.1128/JB.183.9.2823–2833.2001. pmid:11292802
[20]  Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, et al. (2004) Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101: 3597–3602. pmid:14988506 doi: 10.1073/pnas.0400326101
[21]  Connolly JPR, Goldstone RJ, Burgess K, Cogdell RJ, Beatson SA, et al. (2015) The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME J 9: 1039–1051. doi: 10.1038/ismej.2014.242. pmid:25526369
[22]  Roesch PL, Redford P, Batchelet S, Moritz RL, Pellett S, et al. (2003) Uropathogenic Escherichia coli use D-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49: 55–67. doi: 10.1046/j.1365-2958.2003.03543.x. pmid:12823810
[23]  Anfora AT, Welch RA (2006) DsdX is the second D-serine transporter in uropathogenic Escherichia coli clinical isolate CFT073. J Bacteriol 188: 6622–6628. doi: 10.1128/JB.00634-06. pmid:16952954
[24]  Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75: 5298–5304. doi: 10.1128/IAI.00652-07. pmid:17785472
[25]  Metzler DE, Snell EE (1952) Deamination of serine. II. D-Serine dehydrase, a vitamin B6 enzyme from Escherichia coli. J Biol Chem 198: 363–373. pmid:12999751
[26]  N?rregaard-madsen M, Fall EMC (1995) Organization and transcriptional regulation of the Escherichia coli K-12 D-serine tolerance locus. These include: Organization and Transcriptional Regulation of the Escherichia coli K-12 D -Serine Tolerance Locus. J Bacteriol 177: 6456–6461. pmid:7592420
[27]  Moritz RL, Welch RA (2006) The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA. J Clin Microbiol 44: 4038–4048. doi: 10.1128/JCM.01172-06. pmid:17088369
[28]  Roe AJ, Tysall L, Dransfield T, Wang D, Fraser-Pitt D, et al. (2007) Analysis of the expression, regulation and export of NleA-E in Escherichia coli O157:H7. Microbiology 153: 1350–1360. doi: 10.1099/mic.0.2006/003707-0. pmid:17464049
[29]  Hancock V, Klemm P (2007) Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75: 966–976. doi: 10.1128/IAI.01748-06. pmid:17145952
[30]  Gurmu D, Lu J, Johnson K a, Nordlund P, Holmgren A, et al. (2009) The crystal structure of the protein YhaK from Escherichia coli reveals a new subclass of redox sensitive enterobacterial bicupins. Proteins 74: 18–31. doi: 10.1002/prot.22128. pmid:18561187
[31]  Jahreis K, Bentler L, Bockmann J, Meyer A, Siepelmeyer J, et al. (2002) Adaptation of sucrose metabolism in the adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184: 5307–5316. doi: 10.1128/JB.184.19.5307. pmid:12218016
[32]  Van den Beld MJC, Reubsaet FAG (2012) Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur J Clin Microbiol Infect Dis 31: 899–904. doi: 10.1007/s10096-011-1395-7. pmid:21901636
[33]  Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, et al. (2007) In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75: 278–289. doi: 10.1128/IAI.01319-06. pmid:17074858
[34]  Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Raetz CRH, et al. (2006) An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3’-acyloxyacyl moiety of lipid A. J Biol Chem 281: 21974–21987. doi: 10.1074/jbc.M603527200. pmid:16704973
[35]  Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: A genome comparison visualizer. Bioinformatics 27: 1009–1010. doi: 10.1093/bioinformatics/btr039. pmid:21278367
[36]  Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609–3623. doi: 10.1099/mic.0.2008/022772-0. pmid:19047729
[37]  Islam MS, Bingle LEH, Pallen MJ, Busby SJW (2011) Organization of the LEE1 operon regulatory region of enterohaemorrhagic Escherichia coli O157:H7 and activation by GrlA. Mol Microbiol 79: 468–483. doi: 10.1111/j.1365-2958.2010.07460.x. pmid:21219464
[38]  Porter ME, Mitchell P, Free A, Smith DGE, Gally DL (2005) The LEE1 promoters from both Enteropathogenic and Enterohemorrhagic Escherichia coli can be activated by PerC-like proteins from either organism. J Bacteriol 187: 458–472. doi: 10.1128/JB.187.2.458. pmid:15629917
[39]  Sharp FC, Sperandio V (2007) QseA directly activates transcription of LEE1 in enterohemorrhagic Escherichia coli. Infect Immun 75: 2432–2440. doi: 10.1128/IAI.02003-06. pmid:17339361
[40]  García-Angulo VA, Martínez-Santos VI, Villase?or T, Santana FJ, Huerta-Saquero A, et al. (2012) A distinct regulatory sequence is essential for the expression of a subset of nle genes in attaching and effacing Escherichia coli. J Bacteriol 194: 5589–5603. doi: 10.1128/JB.00190-12. pmid:22904277
[41]  Holmes A, Lindestam Arlehamn CS, Wang D, Mitchell TJ, Evans TJ, et al. (2012) Expression and regulation of the Escherichia coli O157:H7 effector proteins NleH1 and NleH2. PLoS One 7: e33408. doi: 10.1371/journal.pone.0033408. pmid:22428045
[42]  Sakin? T, Michalski N, Kleine B, Gatermann SG (2009) The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of D-serine. FEMS Microbiol Lett 299: 60–64. doi: 10.1111/j.1574-6968.2009.01731.x. pmid:19674114
[43]  Korte-Berwanger M, Sakinc T, Kline K, Nielsen H V, Hultgren S, et al. (2013) Significance of the D-serine-deaminase and D-serine metabolism of Staphylococcus saprophyticus for virulence. Infect Immun 81: 4525–4533. doi: 10.1128/IAI.00599-13. pmid:24082071
[44]  Shaw RK, Daniell S, Frankel G, Knutton S (2002) Enteropathogenic Escherichia coli translocate Tir and form an intimin-Tir intimate attachment to red blood cell membranes. Microbiology 148: 1355–1365. pmid:11988509 doi: 10.1099/00221287-148-5-1355
[45]  Torres AG, Kaper JB (2003) Multiple Elements Controlling Adherence of Enterohemorrhagic Escherichia coli O157: H7 to HeLa Cells Multiple Elements Controlling Adherence of Enterohemorrhagic Escherichia coli O157: H7 to HeLa Cells. Infect Immun 71: 4985–4995. doi: 10.1128/IAI.71.9.4985. pmid:12933841
[46]  Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100: 8951–8956. doi: 10.1073/pnas.1537100100. pmid:12847292
[47]  Luzader DH, Clark DE, Gonyar LA, Kendall MM (2013) EutR is a direct regulator of genes that contribute to metabolism and virulence in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 195: 4947–4953. doi: 10.1128/JB.00937-13. pmid:23995630
[48]  Bingle LEH, Constantinidou C, Shaw RK, Islam MS, Patel M, et al. (2014) Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS One 9: e80160. doi: 10.1371/journal.pone.0080160. pmid:24454682
[49]  Cosloy SD, McFall E (1973) Metabolism of D-serine in Escherichia coli K-12: mechanism of growth inhibition. J Bacteriol 114: 685–694. pmid:4574697
[50]  Iyoda S. and Watanabe H (2004) Positive effects of multiple pch genes on expression of the locus of enterocyte effacement genes and adherence of enterohaemorrhagic Escherichia coli O157: H7 to HEp-2 cells. Microbiology 150: 2357–2571. doi: 10.1099/mic.0.27100–0. pmid:15256577
[51]  Tree JJ, Roe AJ, Flockhart A, McAteer SP, Xu X, et al. (2011) Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol 80: 1349–1365. doi: 10.1111/j.1365-2958.2011.07650.x. pmid:21492263
[52]  Goldberg MD, Johnson M, Hinton JCD, Williams PH (2001) Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol Microbiol 41: 549–559. doi: 10.1046/j.1365-2958.2001.02526.x. pmid:11532124
[53]  Friedberg D, Umanski T, Fang Y, Rosenshine I (1999) Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol Microbiol 34: 941–952. doi: 10.1046/j.1365-2958.1999.01655.x. pmid:10594820
[54]  Abe H, Miyahara A, Oshima T, Tashiro K, Ogura Y, et al. (2008) Global regulation by horizontally transferred regulators establishes the pathogenicity of Escherichia coli. DNA Res 15: 13–23. doi: 10.1093/dnares/dsm033
[55]  Sharma VK, Bearson BL (2013) Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD. Appl Environ Microbiol 79: 2384–2396. doi: 10.1128/AEM.02998-12. pmid:23377937
[56]  Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Olschl?ger T, et al. (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 103: 12879–12884. doi: 10.1073/pnas.0603038103. pmid:16912116
[57]  Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, et al. (2014) Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A 111: 18327–18332. doi: 10.1073/pnas.1415959112. pmid:25489107
[58]  Chen SL, Wu M, Henderson JP, Hooton TM, Hibbing ME, et al. (2013) Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med 5: 184ra60. doi: 10.1126/scitranslmed.3005497. pmid:23658245
[59]  Toval F, Schiller R, Meisen I, Putze J, Kouzel IU, et al. (2014) Characterization of Urinary Tract Infection-Associated Shiga Toxin-Producing Escherichia coli. Infect Immun 82: 4631–4642. doi: 10.1128/IAI.01701-14. pmid:25156739
[60]  Hart E, Yang J, Tauschek M, Kelly M, Wakefield MJ, et al. (2008) RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium. Infect Immun 76: 5247–5256. doi: 10.1128/IAI.00770-08. pmid:18765720
[61]  Yang J, Dogovski C, Hocking D, Tauschek M, Perugini M, et al. (2009) Bicarbonate-mediated stimulation of RegA, the global virulence regulator from Citrobacter rodentium. J Mol Biol 394: 591–599. doi: 10.1016/j.jmb.2009.10.033. pmid:19853617
[62]  Tan A, Petty NK, Hocking D, Bennett-Wood V, Wakefield M, et al. (2015) Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species. Infect Immun IAI.02697-. doi: 10.1128/IAI.02697-14.
[63]  Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108: 583–586. pmid:11893328 doi: 10.1016/s0092-8674(02)00665-7
[64]  Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21: 134–156. doi: 10.1128/CMR.00032-07. pmid:18202440
[65]  Abby SS, Rocha EPC (2012) The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8: e1002983. doi: 10.1371/journal.pgen.1002983. pmid:23028376
[66]  Datsenko K a, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. doi: 10.1073/pnas.120163297. pmid:10829079
[67]  Emmerson JR, Gally DL, Roe AJ (2006) Generation of gene deletions and gene replacements in Escherichia coli O157:H7 using a temperature sensitive allelic exchange system. Biol Proced Online 8: 153–162. doi: 10.1251/bpo123. pmid:17033696
[68]  Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, et al. (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3: 623–628. doi: 10.1038/nmeth895. pmid:16862137
[69]  Miller JH (1972) Experiments in molecular genetics. Cold Spring Harb Lab Press Cold Spring Harb NY.
[70]  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616. pmid:19910308
[71]  Chaudhuri RR, Khan AM, Pallen MJ (2004) coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics. Nucleic Acids Res 32: D296–D299. doi: 10.1093/nar/gkh031. pmid:14681417
[72]  Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Mu?iz-Rascado L, et al. (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 41: 203–213. doi: 10.1093/nar/gks1201.
[73]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262. pmid:11846609
[74]  Goldstone RJ, Popat R, Schuberth HJ, Sandra O, Sheldon IM, et al. (2014) Genomic characterisation of an endometrial pathogenic Escherichia coli strain reveals the acquisition of genetic elements associated with extra-intestinal pathogenicity. BMC Genomics 15: 1075. doi: 10.1186/1471-2164-15-1075. pmid:25481482
[75]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2. pmid:2231712
[76]  Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi: 10.1093/nar/gkh340. pmid:15034147
[77]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. doi: 10.1080/10635150390235520. pmid:14530136
[78]  Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. doi: 10.1093/bioinformatics/btg412. pmid:14734327
[79]  R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL . R Found Stat Comput Vienna, Austria.
[80]  Fitzjohn RG (2012) Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol Evol 3: 1084–1092. doi: 10.1111/j.2041-210X.2012.00234.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413