全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

DOI: 10.1371/journal.ppat.1005384

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.

References

[1]  Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60: 471–484. doi: 10.1146/annurev.med.60.041807.123549. pmid:18947296
[2]  Anthony KB, Yoder C, Metcalf JA, DerSimonian R, Orenstein JM, et al. (2003) Incomplete CD4 T cell recovery in HIV-1 infection after 12 months of highly active antiretroviral therapy is associated with ongoing increased CD4 T cell activation and turnover. J Acquir Immune Defic Syndr 33: 125–133. pmid:12794543 doi: 10.1097/00126334-200306010-00002
[3]  Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62: 141–155. doi: 10.1146/annurev-med-042909-093756. pmid:21090961
[4]  Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, et al. (2003) T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 187: 1534–1543. pmid:12721933 doi: 10.1086/374786
[5]  Brenchley JM, Paiardini M (2011) Immunodeficiency lentiviral infections in natural and non-natural hosts. Blood 118: 847–854. doi: 10.1182/blood-2010-12-325936. pmid:21505193
[6]  Pandrea I, Apetrei C (2010) Where the wild things are: Pathogenesis of SIV infection in African nonhuman primate hosts. Curr HIV/AIDS Reports 7: 28–36. doi: 10.1007/s11904-009-0034-8. pmid:20425055
[7]  Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL (2007) Understanding the benign nature of SIV infection in natural hosts. J Clin Invest 117: 3148–3154. pmid:17975656 doi: 10.1172/jci33034
[8]  Pandrea I, Sodora DL, Silvestri G, Apetrei C (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29: 419–428. doi: 10.1016/j.it.2008.05.004. pmid:18676179
[9]  VandeWoude S, Apetrei C (2006) Going wild: Lessons from T-lymphotropic naturally occurring lentiviruses. Clin Microbiol Rev 19: 728–762. pmid:17041142 doi: 10.1128/cmr.00009-06
[10]  Pandrea I, Silvestri G, Onanga R, Veazey RS, Marx PA, et al. (2006) Simian immunodeficiency viruses replication dynamics in African non-human primate hosts: common patterns and species-specific differences. J Med Primatol 35: 194–201. pmid:16872282 doi: 10.1111/j.1600-0684.2006.00168.x
[11]  Ma D, Jasinska A, Kristoff J, Grobler JP, Turner T, et al. (2013) SIVagm infection in wild African green monkeys from South Africa: epidemiology, natural history, and evolutionary considerations. PLoS Pathog 9: e1003011. doi: 10.1371/journal.ppat.1003011. pmid:23349627
[12]  Gaufin T, Pattison M, Gautam R, Stoulig C, Dufour J, et al. (2009) Effect of B-cell depletion on viral replication and clinical outcome of simian immunodeficiency virus infection in a natural host. J Virol 83: 10347–10357. doi: 10.1128/JVI.00880-09. pmid:19656874
[13]  Gaufin T, Ribeiro RM, Gautam R, Dufour J, Mandell D, et al. (2010) Experimental depletion of CD8+ cells in acutely SIVagm-infected African Green Monkeys results in increased viral replication. Retrovirology 7: 42. doi: 10.1186/1742-4690-7-42. pmid:20459829
[14]  Apetrei C, Sumpter B, Souquiere S, Chahroudi A, Makuwa M, et al. (2011) Immunovirological analyses of chronically simian immunodeficiency virus SIVmnd-1- and SIVmnd-2-infected mandrills (Mandrillus sphinx). J Virol 85: 13077–13087. doi: 10.1128/JVI.05693-11. pmid:21957286
[15]  Apetrei C, Gautam R, Sumpter B, Carter AC, Gaufin T, et al. (2007) Virus subtype-specific features of natural simian immunodeficiency virus SIVsmm infection in sooty mangabeys. J Virol 81: 7913–7923. pmid:17507488 doi: 10.1128/jvi.00281-07
[16]  Kristoff J, Haret-Richter G, Ma D, Ribeiro RM, Xu C, et al. (2014) Early blockade of microbial translocation positively impacts the natural history of SIV infection. J Clin Invest 124: 2802–2806. doi: 10.1172/jci75090
[17]  Mandell D, Kristoff J, Gaufin T, Gautam R, Ma D, et al. (2014) Determinants of increased pathogenicity upon simian immunodeficiency virus cross-species transmission from natural hosts. J Virol 88: 6778–6792. doi: 10.1128/jvi.03785-13
[18]  Wijewardana V, Kristoff J, Xu C, Ma D, Haret-Richter G, et al. (2013) Kinetics of myeloid dendritic cell trafficking and activation: Impact on progressive, nonprogressive and controlled SIV infections. PLoS Pathog 9: e1003600. doi: 10.1371/journal.ppat.1003600. pmid:24098110
[19]  International AIDS Society Scientific Working Group on HIV Cure, Deeks SG, Autran B, Berkhout B, Benkirane M, et al. (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12: 607–614. doi: 10.1038/nri3262. pmid:22814509
[20]  Clements JE, Gama L, Graham DR, Mankowski JL, Zink MC (2011) A simian immunodeficiency virus macaque model of highly active antiretroviral treatment: viral latency in the periphery and the central nervous system. Curr Opin HIV AIDS 6: 37–42. doi: 10.1097/COH.0b013e3283412413. pmid:21242892
[21]  Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382: 1525–1533. doi: 10.1016/S0140-6736(13)61809-7. pmid:24152939
[22]  Brenchley JM, Douek DC (2012) Microbial translocation across the GI tract. Annu Rev Immunol 30: 149–173. doi: 10.1146/annurev-immunol-020711-075001. pmid:22224779
[23]  Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7: 235–239. pmid:16482171 doi: 10.1038/ni1316
[24]  Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371. pmid:17115046 doi: 10.1038/nm1511
[25]  Sandler NG, Douek DC (2012) Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 10: 655–666. doi: 10.1038/nrmicro2848. pmid:22886237
[26]  Gordon S, Klatt NR, Milush JM, Engram J, Dunham RM, et al. (2007) Severe depletion of mucosal CD4+ T cells in AIDS-free SIV-infected sooty mangabeys. J Immunol 179: 3026–3034. doi: 10.4049/jimmunol.179.5.3026
[27]  Pandrea I, Gautam R, Ribeiro R, Brenchley JM, Butler IF, et al. (2007) Acute loss of intestinal CD4+ T cells is not predictive of SIV virulence. J Immunol 179: 3035–3046. doi: 10.4049/jimmunol.179.5.3035
[28]  Ma D, Jasinska AJ, Feyertag F, Wijewardana V, Kristoff J, et al. (2014) Factors associated with siman immunodeficiency virus transmission in a natural African nonhuman primate host in the wild. J Virol 88: 5687–5705. doi: 10.1128/JVI.03606-13. pmid:24623416
[29]  Pandrea I, Cornell E, Wilson C, Ribeiro RM, Ma D, et al. (2012) Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates. Blood 120: 1357–1366. doi: 10.1182/blood-2012-03-414706. pmid:22653975
[30]  Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, et al. (2008) Cutting edge: Experimentally induced immune activation in natural hosts of simian immunodeficiency virus induces significant increases in viral replication and CD4+ T cell depletion. J Immunol 181: 6687–6691. pmid:18981083 doi: 10.4049/jimmunol.181.10.6687
[31]  Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, et al. (2010) Rifaximin treatment in hepatic encephalopathy. N Engl J Med 362: 1071–1081. doi: 10.1056/NEJMoa0907893. pmid:20335583
[32]  Das KM (1989) Sulfasalazine therapy in inflammatory bowel disease. Gastroenterol Clin North Am 18: 1–20. pmid:2563989
[33]  Das KM (1983) Pharmacotherapy of inflammatory bowel disease. Part 1. Sulfasalazine. Postgrad Med 74: 141–148, 150–141. pmid:6139795
[34]  Brenchley JM, Douek DC (2008) HIV infection and the gastrointestinal immune system. Mucosal Immunol 1: 23–30. doi: 10.1038/mi.2007.1. pmid:19079157
[35]  Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, et al. (2010) Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog 6: e1001052. doi: 10.1371/journal.ppat.1001052. pmid:20808901
[36]  Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, et al. (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5: e203. doi: 10.1371/journal.pmed.0050203. pmid:18942885
[37]  Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, et al. (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179: 859–870. pmid:10068581 doi: 10.1086/314660
[38]  Giorgi JV, Lyles RH, Matud JL, Yamashita TE, Mellors JW, et al. (2002) Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J Acquir Immune Defic Syndr 29: 346–355. pmid:11917238 doi: 10.1097/00126334-200204010-00004
[39]  Hazenberg MD, Otto SA, van Benthem BH, Roos MT, Coutinho RA, et al. (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. Aids 17: 1881–1888. pmid:12960820 doi: 10.1097/00002030-200309050-00006
[40]  Rodriguez B, Sethi AK, Cheruvu VK, Mackay W, Bosch RJ, et al. (2006) Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. Jama 296: 1498–1506. pmid:17003398 doi: 10.1001/jama.296.12.1498
[41]  Sandler NG, Wand H, Roque A, Law M, Nason MC, et al. (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 203: 780–790. doi: 10.1093/infdis/jiq118. pmid:21252259
[42]  Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, et al. (2010) Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 115: 161–167. doi: 10.1182/blood-2009-03-210179. pmid:19828697
[43]  Sandler NG, Zhang X, Bosch RJ, Funderburg NT, Choi AI, et al. (2014) Sevelamer does not decrease lipopolysaccharide or soluble CD14 but does decrease soluble tissue factor, LDL, and oxidized LDL levels in untreated HIV infection. J Infect Dis: in press. doi: 10.1093/infdis/jiu305
[44]  Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, et al. (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200: 749–759. pmid:15365096 doi: 10.1084/jem.20040874
[45]  Li Q, Duan L, Estes JD, Ma ZM, Rourke T, et al. (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434: 1148–1152. pmid:15793562 doi: 10.1038/nature03513
[46]  Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, et al. (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434: 1093–1097. pmid:15793563 doi: 10.1038/nature03501
[47]  Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, et al. (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200: 761–770. pmid:15365095 doi: 10.1084/jem.20041196
[48]  Cassol E, Rossouw T, Seebregts C, Cassol S (2011) Microbial translocation: a marker of advanced HIV-1 infection and a predictor of treatment failure? J Infect Dis 203: 747–748. doi: 10.1093/infdis/jiq109. pmid:21278212
[49]  D'Ettorre G, Douek D, Paiardini M, Ceccarelli G, Vullo V (2012) Microbial translocation and infectious diseases: what is the link? Int J Microbiol 2012: 356981. doi: 10.1155/2012/356981. pmid:23091494
[50]  Leinert C, Stahl-Hennig C, Ecker A, Schneider T, Fuchs D, et al. (2010) Microbial translocation in simian immunodeficiency virus (SIV)-infected rhesus monkeys (Macaca mulatta). J Med Primatol 39: 243–251. doi: 10.1111/j.1600-0684.2010.00429.x. pmid:20618590
[51]  Naranbhai V, Samsunder N, Sandler NG, Roque A, Abdool Karim Q, et al. (2013) Neither microbial translocation nor TLR responsiveness are likely explanations for preexisting immune activation in women who subsequently acquired HIV in CAPRISA 004. J Acquir Immune Defic Syndr 63: 294–298. doi: 10.1097/QAI.0b013e31828e604b. pmid:23481666
[52]  Redd AD, Gray RH, Quinn TC (2011) Is microbial translocation a cause or consequence of HIV disease progression? J Infect Dis 203: 744–745; author reply 746. doi: 10.1093/infdis/jiq107. pmid:21220777
[53]  Klatt NR, Canary LA, Vanderford TH, Vinton CL, Engram JC, et al. (2012) Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques. J Virol 86: 1203–1213. doi: 10.1128/JVI.06033-11. pmid:22090099
[54]  Klatt NR, Harris LD, Vinton CL, Sung H, Briant JA, et al. (2010) Compromised gastrointestinal integrity in pigtail macaques is associated with increased microbial translocation, immune activation, and IL-17 production in the absence of SIV infection. Mucosal Immunol 3: 387–398. doi: 10.1038/mi.2010.14. pmid:20357762
[55]  Eitner F, Cui Y, Hudkins KL, Schmidt A, Birkebak T, et al. (1999) Thrombotic microangiopathy in the HIV-2-infected macaque. Am J Pathol 155: 649–661. pmid:10433958 doi: 10.1016/s0002-9440(10)65161-9
[56]  Shafran I, Burgunder P (2008) Rifaximin for the treatment of newly diagnosed Crohn's disease: a case series. Am J Gastroenterol 103: 2158–2160. doi: 10.1111/j.1572-0241.2008.01982_16.x. pmid:18796124
[57]  Schmidt C, Fels T, Baumeister B, Vetter H (1996) The effect of 5-aminosalicylate and para-aminosalicylate on the synthesis of prostaglandin E2 and leukotriene B4 in isolated colonic mucosal cells. Curr Med Res Opin 13: 417–425. pmid:8862941 doi: 10.1185/03007999609111561
[58]  van Hees PA (1987) Sulfasalazine and new analogues in inflammatory bowel disease, with focus on Crohn's disease. Acta Gastroenterol Belg 50: 555–559. pmid:2902723
[59]  Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39: 633–645. doi: 10.1016/j.immuni.2013.10.001. pmid:24138880
[60]  Vesterbacka J, Barqasho B, Haggblom A, Nowak P (2015) Effects of Co-Trimoxazole on Microbial Translocation in HIV-1-Infected Patients Initiating Antiretroviral Therapy. AIDS Res Hum Retroviruses 31: 830–836. doi: 10.1089/AID.2014.0366. pmid:26059763
[61]  Boisvert M, Cote S, Vargas A, Pasvanis S, Bounou S, et al. (2008) PGJ2 antagonizes NF-kappaB-induced HIV-1 LTR activation in colonic epithelial cells. Virology 380: 1–11. doi: 10.1016/j.virol.2008.07.023. pmid:18755491
[62]  Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ (2002) Prostaglandin E(2) inhibits replication of HIV-1 in macrophages through activation of protein kinase A. Cell Immunol 215: 61–71. pmid:12142037 doi: 10.1016/s0008-8749(02)00017-5
[63]  Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, et al. (2011) An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol 85: 6557–6566. doi: 10.1128/JVI.00073-11. pmid:21490090
[64]  Rodriguez-Torres M, Rodriguez-Orengo JF, Rios-Bedoya CF, Fernandez-Carbia A, Salgado-Mercado R, et al. (2006) Double-blind pilot study of mesalamine vs. placebo for treatment of chronic diarrhea and nonspecific colitis in immunocompetent HIV patients. Dig Dis Sci 51: 161–167. pmid:16416230 doi: 10.1007/s10620-006-3102-6
[65]  Bajaj JS, Heuman DM, Sanyal AJ, Hylemon PB, Sterling RK, et al. (2013) Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One 8: e60042. doi: 10.1371/journal.pone.0060042. pmid:23565181
[66]  Tenorio AR, Chan ES, Bosch RJ, Macatangay BJ, Read SW, et al. (2015) Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy—ACTG A5286. J Infect Dis 211: 780–790. doi: 10.1093/infdis/jiu515. pmid:25214516
[67]  Klatt NR, Canary LA, Sun X, Vinton CL, Funderburg NT, et al. (2013) Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest 123: 903–907. doi: 10.1172/JCI66227. pmid:23321668
[68]  Pandrea I, Landay A, Wilson C, Stock J, Tracy R, et al. (2015) Using the pathogenic and nonpathogenic nonhuman primate model for studying non-AIDS comorbidities. Curr HIV/AIDS Rep 12: 54–67. doi: 10.1007/s11904-014-0245-5. pmid:25604236
[69]  Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, et al. (2014) Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 511: 601–605. doi: 10.1038/nature13554. pmid:25043006
[70]  National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC.
[71]  Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, et al. (2011) Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion. PLoS Pathog 7: e1002170. doi: 10.1371/journal.ppat.1002170. pmid:21829366
[72]  Pandrea I, Kornfeld C, Ploquin MJ, Apetrei C, Faye A, et al. (2005) Impact of viral factors on very early in vivo replication profiles in simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 79: 6249–6259. pmid:15858009 doi: 10.1128/jvi.79.10.6249-6259.2005
[73]  Pandrea I, Ribeiro RM, Gautam R, Gaufin T, Pattison M, et al. (2008) Simian immunodeficiency virus SIVagm dynamics in African green monkeys. J Virol 82: 3713–3724. doi: 10.1128/JVI.02402-07. pmid:18216122
[74]  Pandrea I, Apetrei C, Dufour J, Dillon N, Barbercheck J, et al. (2006) Simian immunodeficiency virus SIVagm.sab infection of Caribbean African green monkeys: a new model for the study of SIV pathogenesis in natural hosts. J Virol 80: 4858–4867. pmid:16641277 doi: 10.1128/jvi.80.10.4858-4867.2006
[75]  Gautam R, Gaufin T, Butler I, Gautam A, Barnes M, et al. (2009) Simian immunodeficiency virus SIVrcm, a unique CCR2-tropic virus, selectively depletes memory CD4+ T cells in pigtailed macaques through expanded coreceptor usage in vivo. J Virol 83: 7894–7908. doi: 10.1128/JVI.00444-09. pmid:19493994
[76]  Rickles FR, Patierno S, Fernandez PM (2003) Tissue factor, thrombin, and cancer. Chest 124: 58S–68S. pmid:12970125 doi: 10.1378/chest.124.3_suppl.58s
[77]  Fernandez PM, Patierno SR, Rickles FR (2004) Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost 30: 31–44. doi: 10.1055/s-2004-822969
[78]  Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE, et al. (2015) Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes. doi: 10.2337/db14-1847
[79]  Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, et al. (2014) An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7: 983–994. doi: 10.1038/mi.2013.116. pmid:24399150
[80]  Markle JG, Frank DN, Adeli K, von Bergen M, Danska JS (2014) Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes 5: 485–493. doi: 10.4161/gmic.29795. pmid:25007153
[81]  Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, et al. (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461–2470. doi: 10.1128/AEM.02272-07. pmid:18296538
[82]  Lane DJ, Field KG, Olsen GJ, Pace NR (1988) Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods Enzymol 167: 138–144. pmid:2467178 doi: 10.1016/0076-6879(88)67015-7
[83]  Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829. doi: 10.1093/bioinformatics/bts252. pmid:22556368
[84]  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590–596. doi: 10.1093/nar/gks1219. pmid:23193283
[85]  Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, et al. (2013) Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29: 3100–3101. doi: 10.1093/bioinformatics/btt526. pmid:24021386
[86]  Oksanen J (2008) Vegan: Community ecology package. R package version 115–1 .
[87]  Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148: 257–266. pmid:11782518 doi: 10.1099/00221287-148-1-257
[88]  Frank DN, Amand AL, Feldman RA, Boedeker EC, Harpaz N, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104: 13780–13785. pmid:17699621 doi: 10.1073/pnas.0706625104
[89]  Pinheiro JC, Bates DM (2002) Mixed-effects models in S and S-plus. New York, NY: Springer-Verlag.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413