[1] | Kruglov AA, Kuchmiy A, Grivennikov SI, Tumanov AV, Kuprash DV, et al. (2008) Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: mouse models. Cytokine Growth Factor Rev 19: 231–244. doi: 10.1016/j.cytogfr.2008.04.010. pmid:18502680
|
[2] | Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869–871. pmid:3895437 doi: 10.1126/science.3895437
|
[3] | Monaco C, Nanchahal J, Taylor P, Feldmann M (2015) Anti-TNF therapy: past, present and future. Int Immunol 27: 55–62. doi: 10.1093/intimm/dxu102. pmid:25411043
|
[4] | Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19: 163–196. pmid:11244034 doi: 10.1146/annurev.immunol.19.1.163
|
[5] | Crawford M, Curtis JR (2008) Tumor necrosis factor inhibitors and infection complications. Curr Rheumatol Rep 10: 383–389. pmid:18817643 doi: 10.1007/s11926-008-0062-1
|
[6] | Kim SY, Solomon DH (2010) Tumor necrosis factor blockade and the risk of viral infection. Nat Rev Rheumatol 6: 165–174. doi: 10.1038/nrrheum.2009.279. pmid:20142812
|
[7] | Sher A, Coffman RL (1992) Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10: 385–409. pmid:1590992 doi: 10.1146/annurev.iy.10.040192.002125
|
[8] | Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28: 445–489. doi: 10.1146/annurev-immunol-030409-101212. pmid:20192806
|
[9] | O'Garra A, Murphy KM (2009) From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce T(H)1 development. Nat Immunol 10: 929–932. doi: 10.1038/ni0909-929. pmid:19692989
|
[10] | Tubo NJ, Jenkins MK (2014) CD4+ T Cells: guardians of the phagosome. Clin Microbiol Rev 27: 200–213. doi: 10.1128/CMR.00097-13. pmid:24696433
|
[11] | Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133: 775–787. doi: 10.1016/j.cell.2008.05.009. pmid:18510923
|
[12] | Saraiva M, O'Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10: 170–181. doi: 10.1038/nri2711. pmid:20154735
|
[13] | Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170: 2081–2095. pmid:2531194 doi: 10.1084/jem.170.6.2081
|
[14] | Yssel H, De Waal Malefyt R, Roncarolo MG, Abrams JS, Lahesmaa R, et al. (1992) IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J Immunol 149: 2378–2384. pmid:1356125
|
[15] | Meyaard L, Hovenkamp E, Otto SA, Miedema F (1996) IL-12-induced IL-10 production by human T cells as a negative feedback for IL-12-induced immune responses. J Immunol 156: 2776–2782. pmid:8609396
|
[16] | Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, et al. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742. pmid:9338786 doi: 10.1038/39614
|
[17] | Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190: 995–1004. pmid:10510089 doi: 10.1084/jem.190.7.995
|
[18] | Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, et al. (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546–558. doi: 10.1016/j.immuni.2008.02.017. pmid:18387831
|
[19] | Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, et al. (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8: 1363–1371. pmid:17994025 doi: 10.1038/ni1537
|
[20] | Stager S, Maroof A, Zubairi S, Sanos SL, Kopf M, et al. (2006) Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+ CD4+ T cells. Eur J Immunol 36: 1764–1771. pmid:16791879 doi: 10.1002/eji.200635937
|
[21] | Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204: 285–297. pmid:17283207 doi: 10.1084/jem.20061886
|
[22] | Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y, et al. (2008) IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog 4: e1000004. doi: 10.1371/journal.ppat.1000004. pmid:18401464
|
[23] | Freitas do Rosario AP, Lamb T, Spence P, Stephens R, Lang A, et al. (2012) IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. J Immunol 188: 1178–1190. doi: 10.4049/jimmunol.1102755. pmid:22205023
|
[24] | Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, et al. (2007) Conventional T-bet(+)Foxp3(-) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 204: 273–283. pmid:17283209 doi: 10.1084/jem.20062175
|
[25] | Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA (2005) A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 165: 63–74. pmid:16005735 doi: 10.1016/j.jneuroim.2005.04.018
|
[26] | Reed SG, Brownell CE, Russo DM, Silva JS, Grabstein KH, et al. (1994) IL-10 mediates susceptibility to Trypanosoma cruzi infection. J Immunol 153: 3135–3140. pmid:8089491
|
[27] | Roffe E, Rothfuchs AG, Santiago HC, Marino AP, Ribeiro-Gomes FL, et al. (2012) IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection. J Immunol 188: 649–660. doi: 10.4049/jimmunol.1003845. pmid:22156594
|
[28] | Namangala B, Noel W, De Baetselier P, Brys L, Beschin A (2001) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183: 1794–1800. pmid:11372033 doi: 10.1086/320731
|
[29] | Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. pmid:17389235 doi: 10.1084/jem.20061141
|
[30] | Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, et al. (2014) IFNgamma/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog 10: e1003864. doi: 10.1371/journal.ppat.1003864. pmid:24415936
|
[31] | Portugal S, Moebius J, Skinner J, Doumbo S, Doumtabe D, et al. (2014) Exposure-dependent control of malaria-induced inflammation in children. PLoS Pathog 10: e1004079. doi: 10.1371/journal.ppat.1004079. pmid:24743880
|
[32] | Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, et al. (2009) Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 5: e1000364. doi: 10.1371/journal.ppat.1000364. pmid:19343213
|
[33] | Hunter CA, Kastelein R (2012) Interleukin-27: balancing protective and pathological immunity. Immunity 37: 960–969. doi: 10.1016/j.immuni.2012.11.003. pmid:23244718
|
[34] | Engwerda CR, Ng SS, Bunn PT (2014) The Regulation of CD4(+) T Cell Responses during Protozoan Infections. Front Immunol 5: 498. doi: 10.3389/fimmu.2014.00498. pmid:25352846
|
[35] | Roncarolo MG, Gregori S, Bacchetta R, Battaglia M (2014) Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 380: 39–68. doi: 10.1007/978-3-662-43492-5_3. pmid:25004813
|
[36] | Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12: 1383–1397. doi: 10.1517/14712598.2012.707184. pmid:22849383
|
[37] | Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8: 764–775. doi: 10.1038/nri2414. pmid:18825130
|
[38] | Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5: 606–616. pmid:16056254 doi: 10.1038/nri1669
|
[39] | Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8: 362–371. doi: 10.1038/nri2297. pmid:18379575
|
[40] | Boelaert M, Sundar S (2014) Leishmaniasis. In: Farrer J, Hotez PJ, Junghanss T, Kang G, Lalloo D et al., editors. Manson's Tropical Diseases. Amsterdam: Elsevier. pp. 631–651.
|
[41] | White N (2014) Malaria. In: Farrer J, Hotez PJ, Junghanss T, Kang G, Lalloo D et al., editors. Malaria. Amsterdam: Elsevier. pp. 532–601.
|
[42] | Achtman AH, Khan M, MacLennan IC, Langhorne J (2003) Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution. J Immunol 171: 317–324. pmid:12817013 doi: 10.4049/jimmunol.171.1.317
|
[43] | Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, et al. (2015) The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization during Leishmania donovani infection. PLoS Pathog 11: e1004681. doi: 10.1371/journal.ppat.1004681. pmid:25710496
|
[44] | Dalton JE, Maroof A, Owens BM, Narang P, Johnson K, et al. (2010) Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest 120: 1204–1216. doi: 10.1172/JCI41281. pmid:20234089
|
[45] | Helmby H, Jonsson G, Troye-Blomberg M (2000) Cellular changes and apoptosis in the spleens and peripheral blood of mice infected with blood-stage Plasmodium chabaudi chabaudi AS. Infect Immun 68: 1485–1490. pmid:10678964 doi: 10.1128/iai.68.3.1485-1490.2000
|
[46] | Smelt SC, Engwerda CR, McCrossen M, Kaye PM (1997) Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158: 3813–3821. pmid:9103448
|
[47] | Veress B, Omer A, Satir AA, El Hassan AM (1977) Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 33: 605–610. pmid:590992
|
[48] | Zijlstra EE, el-Hassan AM (2001) Leishmaniasis in Sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg 95 Suppl 1: S27–58. pmid:11370250
|
[49] | Keenan CM, Hendricks LD, Lightner L, Johnson AJ (1984) Visceral leishmaniasis in the German shepherd dog. II. Pathology. Vet Pathol 21: 80–86. pmid:6710817
|
[50] | Ato M, Stager S, Engwerda CR, Kaye PM (2002) Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3: 1185–1191. pmid:12436111 doi: 10.1038/ni861
|
[51] | Engwerda C, Ato M, Cotterell S, Mynott T, Tschannerl A, et al. (2002) A Role for tumor necrosis factor-α in remodeling the splenic marginal zone during Leishmania donovani infection. The American Journal of Pathology 161: 429–437. pmid:12163368 doi: 10.1016/s0002-9440(10)64199-5
|
[52] | Heinemann C, Heink S, Petermann F, Vasanthakumar A, Rothhammer V, et al. (2014) IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat Commun 5: 3770. doi: 10.1038/ncomms4770. pmid:24796719
|
[53] | Neumann C, Heinrich F, Neumann K, Junghans V, Mashreghi MF, et al. (2014) Role of Blimp-1 in programing Th effector cells into IL-10 producers. J Exp Med 211: 1807–1819. doi: 10.1084/jem.20131548. pmid:25073792
|
[54] | Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31: 283–295. doi: 10.1016/j.immuni.2009.06.021. pmid:19664942
|
[55] | Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, et al. (2004) Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med 200: 967–977. pmid:15492122 doi: 10.1084/jem.20040973
|
[56] | Ansari NA, Kumar R, Gautam S, Nylen S, Singh OP, et al. (2011) IL-27 and IL-21 are associated with T cell IL-10 responses in human visceral leishmaniasis. J Immunol 186: 3977–3985. doi: 10.4049/jimmunol.1003588. pmid:21357266
|
[57] | Engwerda CR, Kaye PM (2000) Organ-specific immune responses associated with infectious disease. Immunol Today 21: 73–78. pmid:10652464 doi: 10.1016/s0167-5699(99)01549-2
|
[58] | Salehi S, Bankoti R, Benevides L, Willen J, Couse M, et al. (2012) B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J Immunol 189: 5682–5693. doi: 10.4049/jimmunol.1201966. pmid:23162130
|
[59] | Roers A, Siewe L, Strittmatter E, Deckert M, Schluter D, et al. (2004) T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med 200: 1289–1297. pmid:15534372 doi: 10.1084/jem.20041789
|
[60] | O'Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114: 1372–1378. pmid:15545984 doi: 10.1172/jci23215
|
[61] | Pils MC, Pisano F, Fasnacht N, Heinrich JM, Groebe L, et al. (2010) Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur J Immunol 40: 443–448. doi: 10.1002/eji.200939592. pmid:19941312
|
[62] | Murray HW, Jungbluth A, Ritter E, Montelibano C, Marino MW (2000) Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun 68: 6289–6293. pmid:11035737 doi: 10.1128/iai.68.11.6289-6293.2000
|
[63] | Taylor AP, Murray HW (1997) Intracellular antimicrobial activity in the absence of interferon-gamma: effect of interleukin-12 in experimental visceral leishmaniasis in interferon-gamma gene-disrupted mice. J Exp Med 185: 1231–1239. pmid:9104810 doi: 10.1084/jem.185.7.1231
|
[64] | Cretney E, Xin A, Shi W, Minnich M, Masson F, et al. (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12: 304–311. doi: 10.1038/ni.2006. pmid:21378976
|
[65] | Kallies A, Hawkins ED, Belz GT, Metcalf D, Hommel M, et al. (2006) Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 7: 466–474. pmid:16565720 doi: 10.1038/ni1321
|
[66] | Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A, et al. (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7: 457–465. pmid:16565721 doi: 10.1038/ni1320
|
[67] | Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, et al. (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325: 1006–1010. doi: 10.1126/science.1175870. pmid:19608860
|
[68] | Findlay EG, Greig R, Stumhofer JS, Hafalla JC, de Souza JB, et al. (2010) Essential role for IL-27 receptor signaling in prevention of Th1-mediated immunopathology during malaria infection. J Immunol 185: 2482–2492. doi: 10.4049/jimmunol.0904019. pmid:20631310
|
[69] | Anderson CF, Stumhofer JS, Hunter CA, Sacks D (2009) IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol 183: 4619–4627. doi: 10.4049/jimmunol.0804024. pmid:19748991
|
[70] | Melero I, Grimaldi AM, Perez-Gracia JL, Ascierto PA (2013) Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 19: 997–1008. doi: 10.1158/1078-0432.CCR-12-2214. pmid:23460531
|
[71] | Kraal G (1992) Cells in the marginal zone of the spleen. Int Rev Cytol 132: 31–74. pmid:1555921 doi: 10.1016/s0074-7696(08)62453-5
|
[72] | Kraal G, Rodrigues H, Hoeben K, Van Rooijen N (1989) Lymphocyte migration in the spleen: the effect of macrophage elimination. Immunology 68: 227–232. pmid:2807380
|
[73] | Lyons AB, Parish CR (1995) Are murine marginal-zone macrophages the splenic white pulp analog of high endothelial venules? Eur J Immunol 25: 3165–3172. pmid:7489759 doi: 10.1002/eji.1830251127
|
[74] | Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, et al. (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329: 630–632. pmid:2443857 doi: 10.1038/329630a0
|
[75] | Baluk P, Yao LC, Feng J, Romano T, Jung SS, et al. (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119: 2954–2964. doi: 10.1172/JCI37626. pmid:19759514
|
[76] | Szekanecz Z, Gaspar L, Koch AE (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10: 1739–1753. pmid:15769663 doi: 10.2741/1657
|
[77] | Engwerda CR, Ato M, Stager S, Alexander CE, Stanley AC, et al. (2004) Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection. Am J Pathol 165: 2123–2133. pmid:15579454 doi: 10.1016/s0002-9440(10)63262-2
|
[78] | Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15: 362–374. doi: 10.1038/nri3834. pmid:26008591
|
[79] | Dahlen R, Strid H, Lundgren A, Isaksson S, Raghavan S, et al. (2013) Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand J Immunol 78: 275–284. doi: 10.1111/sji.12081. pmid:23713660
|
[80] | Schmaltz C, Alpdogan O, Muriglan SJ, Kappel BJ, Rotolo JA, et al. (2003) Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood 101: 2440–2445. pmid:12424195 doi: 10.1182/blood-2002-07-2109
|
[81] | Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, et al. (1997) Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90: 3204–3213. pmid:9376604
|
[82] | Hippen KL, Riley JL, June CH, Blazar BR (2011) Clinical perspectives for regulatory T cells in transplantation tolerance. Semin Immunol 23: 462–468. doi: 10.1016/j.smim.2011.07.008. pmid:21820917
|
[83] | Miyara M, Ito Y, Sakaguchi S (2014) TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol 10: 543–551. doi: 10.1038/nrrheum.2014.105. pmid:24980140
|
[84] | Adeegbe DO, Nishikawa H (2013) Natural and induced T regulatory cells in cancer. Front Immunol 4: 190. doi: 10.3389/fimmu.2013.00190. pmid:23874336
|
[85] | Liston A, Gray DH (2014) Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 14: 154–165. doi: 10.1038/nri3605. pmid:24481337
|
[86] | Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, et al. (2003) CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197: 111–119. pmid:12515818 doi: 10.1084/jem.20021345
|
[87] | Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Buscher P, et al. (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci U S A 102: 11468–11473. pmid:16051702 doi: 10.1073/pnas.0503386102
|
[88] | Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, et al. (2007) A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 171: 548–559. pmid:17600128 doi: 10.2353/ajpath.2007.061033
|
[89] | Amante FH, Haque A, Stanley AC, Rivera Fde L, Randall LM, et al. (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185: 3632–3642. doi: 10.4049/jimmunol.1000944. pmid:20720206
|
[90] | Haque A, Best SE, Unosson K, Amante FH, de Labastida F, et al. (2011) Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol 186: 6148–6156. doi: 10.4049/jimmunol.1003955. pmid:21525386
|