全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology

DOI: 10.1371/journal.ppat.1005398

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.

References

[1]  Kruglov AA, Kuchmiy A, Grivennikov SI, Tumanov AV, Kuprash DV, et al. (2008) Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: mouse models. Cytokine Growth Factor Rev 19: 231–244. doi: 10.1016/j.cytogfr.2008.04.010. pmid:18502680
[2]  Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869–871. pmid:3895437 doi: 10.1126/science.3895437
[3]  Monaco C, Nanchahal J, Taylor P, Feldmann M (2015) Anti-TNF therapy: past, present and future. Int Immunol 27: 55–62. doi: 10.1093/intimm/dxu102. pmid:25411043
[4]  Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19: 163–196. pmid:11244034 doi: 10.1146/annurev.immunol.19.1.163
[5]  Crawford M, Curtis JR (2008) Tumor necrosis factor inhibitors and infection complications. Curr Rheumatol Rep 10: 383–389. pmid:18817643 doi: 10.1007/s11926-008-0062-1
[6]  Kim SY, Solomon DH (2010) Tumor necrosis factor blockade and the risk of viral infection. Nat Rev Rheumatol 6: 165–174. doi: 10.1038/nrrheum.2009.279. pmid:20142812
[7]  Sher A, Coffman RL (1992) Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10: 385–409. pmid:1590992 doi: 10.1146/annurev.iy.10.040192.002125
[8]  Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28: 445–489. doi: 10.1146/annurev-immunol-030409-101212. pmid:20192806
[9]  O'Garra A, Murphy KM (2009) From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce T(H)1 development. Nat Immunol 10: 929–932. doi: 10.1038/ni0909-929. pmid:19692989
[10]  Tubo NJ, Jenkins MK (2014) CD4+ T Cells: guardians of the phagosome. Clin Microbiol Rev 27: 200–213. doi: 10.1128/CMR.00097-13. pmid:24696433
[11]  Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133: 775–787. doi: 10.1016/j.cell.2008.05.009. pmid:18510923
[12]  Saraiva M, O'Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10: 170–181. doi: 10.1038/nri2711. pmid:20154735
[13]  Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170: 2081–2095. pmid:2531194 doi: 10.1084/jem.170.6.2081
[14]  Yssel H, De Waal Malefyt R, Roncarolo MG, Abrams JS, Lahesmaa R, et al. (1992) IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J Immunol 149: 2378–2384. pmid:1356125
[15]  Meyaard L, Hovenkamp E, Otto SA, Miedema F (1996) IL-12-induced IL-10 production by human T cells as a negative feedback for IL-12-induced immune responses. J Immunol 156: 2776–2782. pmid:8609396
[16]  Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, et al. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742. pmid:9338786 doi: 10.1038/39614
[17]  Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190: 995–1004. pmid:10510089 doi: 10.1084/jem.190.7.995
[18]  Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, et al. (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546–558. doi: 10.1016/j.immuni.2008.02.017. pmid:18387831
[19]  Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, et al. (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8: 1363–1371. pmid:17994025 doi: 10.1038/ni1537
[20]  Stager S, Maroof A, Zubairi S, Sanos SL, Kopf M, et al. (2006) Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+ CD4+ T cells. Eur J Immunol 36: 1764–1771. pmid:16791879 doi: 10.1002/eji.200635937
[21]  Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204: 285–297. pmid:17283207 doi: 10.1084/jem.20061886
[22]  Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y, et al. (2008) IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog 4: e1000004. doi: 10.1371/journal.ppat.1000004. pmid:18401464
[23]  Freitas do Rosario AP, Lamb T, Spence P, Stephens R, Lang A, et al. (2012) IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. J Immunol 188: 1178–1190. doi: 10.4049/jimmunol.1102755. pmid:22205023
[24]  Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, et al. (2007) Conventional T-bet(+)Foxp3(-) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 204: 273–283. pmid:17283209 doi: 10.1084/jem.20062175
[25]  Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA (2005) A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 165: 63–74. pmid:16005735 doi: 10.1016/j.jneuroim.2005.04.018
[26]  Reed SG, Brownell CE, Russo DM, Silva JS, Grabstein KH, et al. (1994) IL-10 mediates susceptibility to Trypanosoma cruzi infection. J Immunol 153: 3135–3140. pmid:8089491
[27]  Roffe E, Rothfuchs AG, Santiago HC, Marino AP, Ribeiro-Gomes FL, et al. (2012) IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection. J Immunol 188: 649–660. doi: 10.4049/jimmunol.1003845. pmid:22156594
[28]  Namangala B, Noel W, De Baetselier P, Brys L, Beschin A (2001) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183: 1794–1800. pmid:11372033 doi: 10.1086/320731
[29]  Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. pmid:17389235 doi: 10.1084/jem.20061141
[30]  Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, et al. (2014) IFNgamma/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog 10: e1003864. doi: 10.1371/journal.ppat.1003864. pmid:24415936
[31]  Portugal S, Moebius J, Skinner J, Doumbo S, Doumtabe D, et al. (2014) Exposure-dependent control of malaria-induced inflammation in children. PLoS Pathog 10: e1004079. doi: 10.1371/journal.ppat.1004079. pmid:24743880
[32]  Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, et al. (2009) Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 5: e1000364. doi: 10.1371/journal.ppat.1000364. pmid:19343213
[33]  Hunter CA, Kastelein R (2012) Interleukin-27: balancing protective and pathological immunity. Immunity 37: 960–969. doi: 10.1016/j.immuni.2012.11.003. pmid:23244718
[34]  Engwerda CR, Ng SS, Bunn PT (2014) The Regulation of CD4(+) T Cell Responses during Protozoan Infections. Front Immunol 5: 498. doi: 10.3389/fimmu.2014.00498. pmid:25352846
[35]  Roncarolo MG, Gregori S, Bacchetta R, Battaglia M (2014) Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 380: 39–68. doi: 10.1007/978-3-662-43492-5_3. pmid:25004813
[36]  Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12: 1383–1397. doi: 10.1517/14712598.2012.707184. pmid:22849383
[37]  Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8: 764–775. doi: 10.1038/nri2414. pmid:18825130
[38]  Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5: 606–616. pmid:16056254 doi: 10.1038/nri1669
[39]  Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8: 362–371. doi: 10.1038/nri2297. pmid:18379575
[40]  Boelaert M, Sundar S (2014) Leishmaniasis. In: Farrer J, Hotez PJ, Junghanss T, Kang G, Lalloo D et al., editors. Manson's Tropical Diseases. Amsterdam: Elsevier. pp. 631–651.
[41]  White N (2014) Malaria. In: Farrer J, Hotez PJ, Junghanss T, Kang G, Lalloo D et al., editors. Malaria. Amsterdam: Elsevier. pp. 532–601.
[42]  Achtman AH, Khan M, MacLennan IC, Langhorne J (2003) Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution. J Immunol 171: 317–324. pmid:12817013 doi: 10.4049/jimmunol.171.1.317
[43]  Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, et al. (2015) The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization during Leishmania donovani infection. PLoS Pathog 11: e1004681. doi: 10.1371/journal.ppat.1004681. pmid:25710496
[44]  Dalton JE, Maroof A, Owens BM, Narang P, Johnson K, et al. (2010) Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest 120: 1204–1216. doi: 10.1172/JCI41281. pmid:20234089
[45]  Helmby H, Jonsson G, Troye-Blomberg M (2000) Cellular changes and apoptosis in the spleens and peripheral blood of mice infected with blood-stage Plasmodium chabaudi chabaudi AS. Infect Immun 68: 1485–1490. pmid:10678964 doi: 10.1128/iai.68.3.1485-1490.2000
[46]  Smelt SC, Engwerda CR, McCrossen M, Kaye PM (1997) Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158: 3813–3821. pmid:9103448
[47]  Veress B, Omer A, Satir AA, El Hassan AM (1977) Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 33: 605–610. pmid:590992
[48]  Zijlstra EE, el-Hassan AM (2001) Leishmaniasis in Sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg 95 Suppl 1: S27–58. pmid:11370250
[49]  Keenan CM, Hendricks LD, Lightner L, Johnson AJ (1984) Visceral leishmaniasis in the German shepherd dog. II. Pathology. Vet Pathol 21: 80–86. pmid:6710817
[50]  Ato M, Stager S, Engwerda CR, Kaye PM (2002) Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3: 1185–1191. pmid:12436111 doi: 10.1038/ni861
[51]  Engwerda C, Ato M, Cotterell S, Mynott T, Tschannerl A, et al. (2002) A Role for tumor necrosis factor-α in remodeling the splenic marginal zone during Leishmania donovani infection. The American Journal of Pathology 161: 429–437. pmid:12163368 doi: 10.1016/s0002-9440(10)64199-5
[52]  Heinemann C, Heink S, Petermann F, Vasanthakumar A, Rothhammer V, et al. (2014) IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat Commun 5: 3770. doi: 10.1038/ncomms4770. pmid:24796719
[53]  Neumann C, Heinrich F, Neumann K, Junghans V, Mashreghi MF, et al. (2014) Role of Blimp-1 in programing Th effector cells into IL-10 producers. J Exp Med 211: 1807–1819. doi: 10.1084/jem.20131548. pmid:25073792
[54]  Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31: 283–295. doi: 10.1016/j.immuni.2009.06.021. pmid:19664942
[55]  Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, et al. (2004) Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med 200: 967–977. pmid:15492122 doi: 10.1084/jem.20040973
[56]  Ansari NA, Kumar R, Gautam S, Nylen S, Singh OP, et al. (2011) IL-27 and IL-21 are associated with T cell IL-10 responses in human visceral leishmaniasis. J Immunol 186: 3977–3985. doi: 10.4049/jimmunol.1003588. pmid:21357266
[57]  Engwerda CR, Kaye PM (2000) Organ-specific immune responses associated with infectious disease. Immunol Today 21: 73–78. pmid:10652464 doi: 10.1016/s0167-5699(99)01549-2
[58]  Salehi S, Bankoti R, Benevides L, Willen J, Couse M, et al. (2012) B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J Immunol 189: 5682–5693. doi: 10.4049/jimmunol.1201966. pmid:23162130
[59]  Roers A, Siewe L, Strittmatter E, Deckert M, Schluter D, et al. (2004) T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med 200: 1289–1297. pmid:15534372 doi: 10.1084/jem.20041789
[60]  O'Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114: 1372–1378. pmid:15545984 doi: 10.1172/jci23215
[61]  Pils MC, Pisano F, Fasnacht N, Heinrich JM, Groebe L, et al. (2010) Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur J Immunol 40: 443–448. doi: 10.1002/eji.200939592. pmid:19941312
[62]  Murray HW, Jungbluth A, Ritter E, Montelibano C, Marino MW (2000) Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun 68: 6289–6293. pmid:11035737 doi: 10.1128/iai.68.11.6289-6293.2000
[63]  Taylor AP, Murray HW (1997) Intracellular antimicrobial activity in the absence of interferon-gamma: effect of interleukin-12 in experimental visceral leishmaniasis in interferon-gamma gene-disrupted mice. J Exp Med 185: 1231–1239. pmid:9104810 doi: 10.1084/jem.185.7.1231
[64]  Cretney E, Xin A, Shi W, Minnich M, Masson F, et al. (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12: 304–311. doi: 10.1038/ni.2006. pmid:21378976
[65]  Kallies A, Hawkins ED, Belz GT, Metcalf D, Hommel M, et al. (2006) Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 7: 466–474. pmid:16565720 doi: 10.1038/ni1321
[66]  Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A, et al. (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7: 457–465. pmid:16565721 doi: 10.1038/ni1320
[67]  Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, et al. (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325: 1006–1010. doi: 10.1126/science.1175870. pmid:19608860
[68]  Findlay EG, Greig R, Stumhofer JS, Hafalla JC, de Souza JB, et al. (2010) Essential role for IL-27 receptor signaling in prevention of Th1-mediated immunopathology during malaria infection. J Immunol 185: 2482–2492. doi: 10.4049/jimmunol.0904019. pmid:20631310
[69]  Anderson CF, Stumhofer JS, Hunter CA, Sacks D (2009) IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol 183: 4619–4627. doi: 10.4049/jimmunol.0804024. pmid:19748991
[70]  Melero I, Grimaldi AM, Perez-Gracia JL, Ascierto PA (2013) Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 19: 997–1008. doi: 10.1158/1078-0432.CCR-12-2214. pmid:23460531
[71]  Kraal G (1992) Cells in the marginal zone of the spleen. Int Rev Cytol 132: 31–74. pmid:1555921 doi: 10.1016/s0074-7696(08)62453-5
[72]  Kraal G, Rodrigues H, Hoeben K, Van Rooijen N (1989) Lymphocyte migration in the spleen: the effect of macrophage elimination. Immunology 68: 227–232. pmid:2807380
[73]  Lyons AB, Parish CR (1995) Are murine marginal-zone macrophages the splenic white pulp analog of high endothelial venules? Eur J Immunol 25: 3165–3172. pmid:7489759 doi: 10.1002/eji.1830251127
[74]  Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, et al. (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329: 630–632. pmid:2443857 doi: 10.1038/329630a0
[75]  Baluk P, Yao LC, Feng J, Romano T, Jung SS, et al. (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119: 2954–2964. doi: 10.1172/JCI37626. pmid:19759514
[76]  Szekanecz Z, Gaspar L, Koch AE (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10: 1739–1753. pmid:15769663 doi: 10.2741/1657
[77]  Engwerda CR, Ato M, Stager S, Alexander CE, Stanley AC, et al. (2004) Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection. Am J Pathol 165: 2123–2133. pmid:15579454 doi: 10.1016/s0002-9440(10)63262-2
[78]  Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15: 362–374. doi: 10.1038/nri3834. pmid:26008591
[79]  Dahlen R, Strid H, Lundgren A, Isaksson S, Raghavan S, et al. (2013) Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand J Immunol 78: 275–284. doi: 10.1111/sji.12081. pmid:23713660
[80]  Schmaltz C, Alpdogan O, Muriglan SJ, Kappel BJ, Rotolo JA, et al. (2003) Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood 101: 2440–2445. pmid:12424195 doi: 10.1182/blood-2002-07-2109
[81]  Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, et al. (1997) Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90: 3204–3213. pmid:9376604
[82]  Hippen KL, Riley JL, June CH, Blazar BR (2011) Clinical perspectives for regulatory T cells in transplantation tolerance. Semin Immunol 23: 462–468. doi: 10.1016/j.smim.2011.07.008. pmid:21820917
[83]  Miyara M, Ito Y, Sakaguchi S (2014) TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol 10: 543–551. doi: 10.1038/nrrheum.2014.105. pmid:24980140
[84]  Adeegbe DO, Nishikawa H (2013) Natural and induced T regulatory cells in cancer. Front Immunol 4: 190. doi: 10.3389/fimmu.2013.00190. pmid:23874336
[85]  Liston A, Gray DH (2014) Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 14: 154–165. doi: 10.1038/nri3605. pmid:24481337
[86]  Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, et al. (2003) CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197: 111–119. pmid:12515818 doi: 10.1084/jem.20021345
[87]  Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Buscher P, et al. (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci U S A 102: 11468–11473. pmid:16051702 doi: 10.1073/pnas.0503386102
[88]  Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, et al. (2007) A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 171: 548–559. pmid:17600128 doi: 10.2353/ajpath.2007.061033
[89]  Amante FH, Haque A, Stanley AC, Rivera Fde L, Randall LM, et al. (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185: 3632–3642. doi: 10.4049/jimmunol.1000944. pmid:20720206
[90]  Haque A, Best SE, Unosson K, Amante FH, de Labastida F, et al. (2011) Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol 186: 6148–6156. doi: 10.4049/jimmunol.1003955. pmid:21525386

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133