全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Regulation of Rac1 and Reactive Oxygen Species Production in Response to Infection of Gastrointestinal Epithelia

DOI: 10.1371/journal.ppat.1005382

Full-Text   Cite this paper   Add to My Lib

Abstract:

Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.

References

[1]  Rescigno M (2011) The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 32: 256–264. doi: 10.1016/j.it.2011.04.003. pmid:21565554
[2]  Swanson PA, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, et al. (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proceedings of the National Academy of Sciences 108: 8803–8808. doi: 10.1073/pnas.1010042108
[3]  Neish AS (2013) Redox signaling mediated by the gut microbiota. Free Radic Res 47: 950–957. doi: 10.3109/10715762.2013.833331. pmid:23937589
[4]  Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Sekiyama A, et al. (2006) NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. AntioxidRedoxSignal 8: 1573–1582. doi: 10.1089/ars.2006.8.1573
[5]  Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181–189. pmid:15039755 doi: 10.1038/nri1312
[6]  Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews 87: 245–313. pmid:17237347 doi: 10.1152/physrev.00044.2005
[7]  Hardbower DM, Peek RM Jr., Wilson KT (2014) At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 96: 201–212. doi: 10.1189/jlb.4BT0214-099R. pmid:24868089
[8]  Ernst PB, Gold BD (1999) Helicobacter pylori in childhood: new insights into the immunopathogenesis of gastric disease and implications for managing infection in children. J Pediatr Gastroenterol Nutr 28: 462–473. pmid:10328119 doi: 10.1097/00005176-199905000-00005
[9]  Ernst PB, Peura DA, Crowe SE (2006) The translation of Helicobacter pylori basic research to patient care. Gastroenterology 130: 188–206; quiz 212–183. pmid:16401482 doi: 10.1053/j.gastro.2005.06.032
[10]  Teshima S, Rokutan K, Nikawa T, Kishi K (1998) Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Gastroenterology 115: 1186–1196. pmid:9797374 doi: 10.1016/s0016-5085(98)70090-3
[11]  Nagata K, Yu H, Nishikawa M, Kashiba M, Nakamura A, et al. (1998) Helicobacter pylori generates superoxide radicals and modulates nitric oxide metabolism. Journal of Biological Chemistry 273: 14071–14073. pmid:9603902 doi: 10.1074/jbc.273.23.14071
[12]  Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, et al. (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75: 4030–4039. pmid:17562777 doi: 10.1128/iai.00172-07
[13]  Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo S, et al. (2005) Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. American Journal of Physiology-Cell Physiology 288: C450–C457. pmid:15469954 doi: 10.1152/ajpcell.00319.2004
[14]  Cheng G, Diebold BA, Hughes Y, Lambeth JD (2006) Nox1-dependent Reactive Oxygen Generation Is Regulated by Rac1. Journal of Biological Chemistry 281: 17718–17726. pmid:16636067 doi: 10.1074/jbc.m512751200
[15]  Ryan KA, Smith MF Jr., Sanders MK, Ernst PB (2004) Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infection and Immunity 72: 2123–2130. pmid:15039334 doi: 10.1128/iai.72.4.2123-2130.2004
[16]  Nardone G, Rocco A, Malfertheiner P (2004) Review article: Helicobacter pylori and molecular events in precancerous gastric lesions. Aliment Pharmacol Ther 20: 261–270. pmid:15274662 doi: 10.1111/j.1365-2036.2004.02075.x
[17]  Jenks PJ, Jeremy AH, Robinson PA, Walker MM, Crabtree JE (2003) Long-term infection with Helicobacter felis and inactivation of the tumour suppressor gene p53 cumulatively enhance the gastric mutation frequency in Big Blue transgenic mice. JPathol 201: 596–602. doi: 10.1002/path.1488
[18]  Bhattacharyya A, Mitra S, Chattopadhyay R., Crowe S.E. (2014) Oxidative stress: role in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94: 329–354. doi: 10.1152/physrev.00040.2012. pmid:24692350
[19]  Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012: 623019. doi: 10.1155/2012/623019. pmid:22363173
[20]  Ding SZ, O'Hara AM, Denning TL, Dirden-Kramer B, Mifflin RC, et al. (2004) Helicobacter pylori and H 2 O 2 increases AP endonuclease-1/redox factor-1 expression in human gastric epithelial cells. Gastroenterology 127: 845–858. pmid:15362040 doi: 10.1053/j.gastro.2004.06.017
[21]  Bhattacharyya A, Chattopadhyay R, Burnette BR, Cross JV, Mitra S, et al. (2009) Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis. Gastroenterology 136: 2258–2269. doi: 10.1053/j.gastro.2009.02.014. pmid:19505426
[22]  Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, et al. (2008) Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Molecular and Cellular Biology 28: 7066–7080. doi: 10.1128/MCB.00244-08. pmid:18809583
[23]  Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003) Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. EMBO J 22: 6299–6309. pmid:14633989 doi: 10.1093/emboj/cdg595
[24]  O'Hara AM, Bhattacharyya A, Mifflin RC, Smith MF, Ryan KA, et al. (2006) Interleukin-8 induction by Helicobacter pylori in gastric epithelial cells is dependent on apurinic/apyrimidinic endonuclease-1/redox factor-1. J Immunol 177: 7990–7999. pmid:17114472 doi: 10.4049/jimmunol.177.11.7990
[25]  O'Hara AM, Bhattacharyya A, Bai J, Mifflin RC, Ernst PB, et al. (2009) Tumor necrosis factor (TNF)-alpha-induced IL-8 expression in gastric epithelial cells: role of reactive oxygen species and AP endonuclease-1/redox factor (Ref)-1. Cytokine 46: 359–369. doi: 10.1016/j.cyto.2009.03.010. pmid:19376732
[26]  Chattopadhyay R, Bhattacharyya A, Crowe SE (2010) Dual regulation by apurinic/apyrimidinic endonuclease-1 inhibits gastric epithelial cell apoptosis during Helicobacter pylori infection. Cancer Res 70: 2799–2808. doi: 10.1158/0008-5472.CAN-09-4136. pmid:20332233
[27]  Ozaki M, Haga S, Irani K, Amemiya H, Suzuki S (2002) Overexpression of redox factor-1 protects against postischemic liver injury by reducing oxidative stress and NF-kappa B activity. Transplantation Proceedings 34: 2640–2642. pmid:12431557 doi: 10.1016/s0041-1345(02)03457-7
[28]  Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. I. Effects on Microbial Killing by Activated Peritoneal Macrophages in Vitro. The Journal of Experimental Medicine 192: 227–236. pmid:10899909 doi: 10.1084/jem.192.2.227
[29]  Gallois A, Klein JR, Allen L-AH, Jones BD, Nauseef WM (2001) Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane. The journal of immunology 166: 5741–5748. pmid:11313417 doi: 10.4049/jimmunol.166.9.5741
[30]  Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM III (2000) Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Research 28: 3871–3879. pmid:11024165 doi: 10.1093/nar/28.20.3871
[31]  Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protocols 8: 2471–2482. doi: 10.1038/nprot.2013.153. pmid:24232249
[32]  Das S, Owen KA, Ly KT, Park D, Black SG, et al. (2011) Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108: 2136–2141. doi: 10.1073/pnas.1014775108. pmid:21245295
[33]  Churin Y, Kardalinou E, Meyer TF, Naumann M (2001) Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Molecular Microbiology 40: 815–823. pmid:11401689 doi: 10.1046/j.1365-2958.2001.02443.x
[34]  Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, et al. (2000) Salmonella Pathogenicity Island 2-Dependent Evasion of the Phagocyte NADPH Oxidase. Science 287: 1655–1658. pmid:10698741 doi: 10.1126/science.287.5458.1655
[35]  Ernst PB, Ryan K, Goldberg J (2003) What is the exact role of Lewis antigens and autoantibodies in Helicobacter related disease. In: Hunt RH, Tytgat GNJ, editors. Helicobacter pylori: Basic mechanisms to clinical cure 2002. London: Kluwer. pp. 73–82.
[36]  Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14: 2215–2231. doi: 10.1089/ars.2010.3554. pmid:20874258
[37]  Bagchi D, McGinn TR, Ye X, Bagchi M, Krohn RL, et al. (2002) Helicobacter pylori-induced oxidative stress and DNA damage in a primary culture of human gastric mucosal cells. Digestive diseases and sciences 47: 1405–1412. pmid:12064819 doi: 10.1023/a:1015399204069
[38]  Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, et al. (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75: 4030–4039. pmid:17562777 doi: 10.1128/iai.00172-07
[39]  Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, et al. (2012) Reactive Oxygen Species-Induced Autophagic Degradation of Helicobacter pylori CagA Is Specifically Suppressed in Cancer Stem-like Cells. Cell Host & Microbe 12: 764–777. doi: 10.1016/j.chom.2012.10.014
[40]  Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, et al. (2003) The adaptive imbalance in base excision–repair enzymes generates microsatellite instability in chronic inflammation. The Journal of Clinical Investigation 112: 1887–1894. pmid:14679184 doi: 10.1172/jci19757
[41]  Danese S., C F, Armuzzi A., Candelli M., Papa A., Ojetti V., Pastorelli A., Di Caro S., Zannoni G., De Sole P., Gasbarrini G., Gasbarrini A. (2001) Helicobacter pylori CagA-positive Strains Affect Oxygen Free Radicals Generation by Gastric Mucosa. Scandinavian Journal of Gastroenterology 36: 247–250. pmid:11305510 doi: 10.1080/003655201750074474
[42]  Swanson PA 2nd, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, et al. (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci U S A 108: 8803–8808. doi: 10.1073/pnas.1010042108. pmid:21555563
[43]  Guo Y, Chen J, Zhao T, Fan Z (2008) Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity. Molecular Immunology 45: 2225–2235. doi: 10.1016/j.molimm.2007.11.020. pmid:18179823
[44]  Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxidants & redox signaling 11: 601–619. doi: 10.1089/ars.2008.2194
[45]  Kaur N, Dhiman M, Perez‐Polo JR, Mantha AK (2015) Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25–35‐induced neurotoxicity in human neuroblastoma cells. Journal of neuroscience research 93: 938–947. doi: 10.1002/jnr.23565. pmid:25677400
[46]  Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, et al. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652. pmid:9054359 doi: 10.1126/science.275.5306.1649
[47]  Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, et al. (2003) Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 193: 43–65. pmid:14599767 doi: 10.1016/s0300-483x(03)00289-0
[48]  Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390: 1–9. pmid:16083425 doi: 10.1042/bj20050104
[49]  DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15: 356–363. pmid:15921909 doi: 10.1016/j.tcb.2005.05.001
[50]  Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, et al. (2013) Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. The EMBO Journal 32: 3130–3144. doi: 10.1038/emboj.2013.233. pmid:24185898

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133