全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control

DOI: 10.1371/journal.ppat.1005315

Full-Text   Cite this paper   Add to My Lib

Abstract:

Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.

References

[1]  Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, et al. (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366: 1275–1286. doi: 10.1056/NEJMoa1113425. pmid:22475592
[2]  Aasa-Chapman MM, Holuigue S, Aubin K, Wong M, Jones NA, et al. (2005) Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol 79: 2823–2830. pmid:15709001 doi: 10.1128/jvi.79.5.2823-2830.2005
[3]  Tyler DS, Stanley SD, Nastala CA, Austin AA, Bartlett JA, et al. (1990) Alterations in antibody-dependent cellular cytotoxicity during the course of HIV-1 infection. Humoral and cellular defects. J Immunol 144: 3375–3384. pmid:2329275
[4]  Ljunggren K, Moschese V, Broliden PA, Giaquinto C, Quinti I, et al. (1990) Antibodies mediating cellular cytotoxicity and neutralization correlate with a better clinical stage in children born to human immunodeficiency virus-infected mothers. J Infect Dis 161: 198–202. pmid:2299204 doi: 10.1093/infdis/161.2.198
[5]  Gomez-Roman VR, Patterson LJ, Venzon D, Liewehr D, Aldrich K, et al. (2005) Vaccine-elicited antibodies mediate antibody-dependent cellular cytotoxicity correlated with significantly reduced acute viremia in rhesus macaques challenged with SIVmac251. J Immunol 174: 2185–2189. pmid:15699150 doi: 10.4049/jimmunol.174.4.2185
[6]  Forthal DN, Landucci G, Keenan B (2001) Relationship between antibody-dependent cellular cytotoxicity, plasma HIV type 1 RNA, and CD4+ lymphocyte count. AIDS Res Hum Retroviruses 17: 553–561. pmid:11350669 doi: 10.1089/08892220151126661
[7]  Baum LL, Cassutt KJ, Knigge K, Khattri R, Margolick J, et al. (1996) HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J Immunol 157: 2168–2173. pmid:8757343
[8]  Ahmad A, Morisset R, Thomas R, Menezes J (1994) Evidence for a defect of antibody-dependent cellular cytotoxic (ADCC) effector function and anti-HIV gp120/41-specific ADCC-mediating antibody titres in HIV-infected individuals. J Acquir Immune Defic Syndr 7: 428–437. pmid:7908983
[9]  Ahmad R, Sindhu ST, Toma E, Morisset R, Vincelette J, et al. (2001) Evidence for a correlation between antibody-dependent cellular cytotoxicity-mediating anti-HIV-1 antibodies and prognostic predictors of HIV infection. J Clin Immunol 21: 227–233. pmid:11403230
[10]  Forthal DN, Landucci G, Haubrich R, Keenan B, Kuppermann BD, et al. (1999) Antibody-dependent cellular cytotoxicity independently predicts survival in severely immunocompromised human immunodeficiency virus-infected patients. J Infect Dis 180: 1338–1341. pmid:10479168 doi: 10.1086/314988
[11]  Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317: 944–947. pmid:17641165 doi: 10.1126/science.1143767
[12]  Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, et al. (2008) Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. The Journal of infectious diseases 197: 563–571. doi: 10.1086/526786. pmid:18275276
[13]  Ackerman ME, Dugast AS, McAndrew EG, Tsoukas S, Licht AF, et al. (2013) Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcgammaR2a and FcgammaR2b. J Virol 87: 5468–5476. doi: 10.1128/JVI.03403-12. pmid:23468489
[14]  Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, et al. (2013) Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest 123: 2183–2192. doi: 10.1172/JCI65708. pmid:23563315
[15]  Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, et al. (2014) Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 6: 228–239. doi: 10.1126/scitranslmed.3007730
[16]  Chung AW, Ghebremichael M, Robinson H, Brown E, Choi I, et al. (2014) Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Science translational medicine 6: 228ra238. doi: 10.1126/scitranslmed.3007736
[17]  Barouch DH, Alter G, Broge T, Linde C, Ackerman ME, et al. (2015) Protective efficacy of adenovirus-protein vaccines against SIV challenges in rhesus monkeys. Science. doi: 10.1126/science.aab3886
[18]  Ackerman ME, Moldt B, Wyatt RT, Dugast AS, McAndrew E, et al. (2011) A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples. Journal of immunological methods 366: 8–19. doi: 10.1016/j.jim.2010.12.016. pmid:21192942
[19]  McAndrew EG, Dugast AS, Licht AF, Eusebio JR, Alter G, et al. (2011) Determining the phagocytic activity of clinical antibody samples. Journal of visualized experiments: JoVE: e3588. doi: 10.3791/3588. pmid:22143444
[20]  Choi I, Chung AW, Suscovich TJ, Rerks-Ngarm S, Pitisuttithum P, et al. (2015) Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput Biol 11: e1004185. doi: 10.1371/journal.pcbi.1004185. pmid:25874406
[21]  Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, et al. (2013) Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 155: 531–539. doi: 10.1016/j.cell.2013.09.061. pmid:24243013
[22]  Tomaras GD, Ferrari G, Shen X, Alam SM, Liao HX, et al. (2013) Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci U S A 110: 9019–9024. doi: 10.1073/pnas.1301456110. pmid:23661056
[23]  Friedman J, Hastie T, Tibshirani R (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw 33: 1–22. pmid:20808728 doi: 10.18637/jss.v033.i01
[24]  Ljunggren K, Broliden PA, Morfeldt-Manson L, Jondal M, Wahren B (1988) IgG subclass response to HIV in relation to antibody-dependent cellular cytotoxicity at different clinical stages. Clin Exp Immunol 73: 343–347. pmid:3208446
[25]  Gulick RM (2002) Structured treatment interruption in patients infected with HIV: a new approach to therapy. Drugs 62: 245–253. pmid:11817971 doi: 10.2165/00003495-200262020-00001
[26]  Garcia F, Plana M, Ortiz GM, Bonhoeffer S, Soriano A, et al. (2001) The virological and immunological consequences of structured treatment interruptions in chronic HIV-1 infection. AIDS 15: F29–40. pmid:11416735 doi: 10.1097/00002030-200106150-00002
[27]  Ruiz L, Martinez-Picado J, Romeu J, Paredes R, Zayat MK, et al. (2000) Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression. AIDS 14: 397–403. pmid:10770542 doi: 10.1097/00002030-200003100-00013
[28]  Lai JI, Licht AF, Dugast AS, Suscovich T, Choi I, et al. (2014) Divergent antibody subclass and specificity profiles but not protective HLA-B alleles are associated with variable antibody effector function among HIV-1 controllers. J Virol 88: 2799–2809. doi: 10.1128/JVI.03130-13. pmid:24352471
[29]  Lambotte O, Pollara J, Boufassa F, Moog C, Venet A, et al. (2013) High antibody-dependent cellular cytotoxicity responses are correlated with strong CD8 T cell viral suppressive activity but not with B57 status in HIV-1 elite controllers. PLoS One 8: e74855. doi: 10.1371/journal.pone.0074855. pmid:24086385
[30]  Hong FF, Mellors JW (2015) Impact of Antiretroviral Therapy on HIV-1 Persistence: The Case for Early Initiation. AIDS Rev 17: 71–82. pmid:26035165
[31]  Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, et al. (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 9: e1003211. doi: 10.1371/journal.ppat.1003211. pmid:23516360
[32]  Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, et al. (2010) Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS 24: 1598–1601. pmid:20549847 doi: 10.1097/qad.0b013e32833b61ba
[33]  Dugast AS, Stamatatos L, Tonelli A, Suscovich TJ, Licht AF, et al. (2014) Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection. Eur J Immunol 44: 2925–2937. doi: 10.1002/eji.201344305. pmid:25043633
[34]  Yates NL, Lucas JT, Nolen TL, Vandergrift NA, Soderberg KA, et al. (2011) Multiple HIV-1-specific IgG3 responses decline during acute HIV-1: implications for detection of incident HIV infection. AIDS 25: 2089–2097. doi: 10.1097/QAD.0b013e32834b348e. pmid:21832938
[35]  van Riet E, Retra K, Adegnika AA, Jol-van der Zijde CM, Uh HW, et al. (2008) Cellular and humoral responses to tetanus vaccination in Gabonese children. Vaccine 26: 3690–3695. doi: 10.1016/j.vaccine.2008.04.067. pmid:18539369
[36]  Scharf O, Golding H, King LR, Eller N, Frazier D, et al. (2001) Immunoglobulin G3 from polyclonal human immunodeficiency virus (HIV) immune globulin is more potent than other subclasses in neutralizing HIV type 1. J Virol 75: 6558–6565. pmid:11413323 doi: 10.1128/jvi.75.14.6558-6565.2001
[37]  Cavacini LA, Emes CL, Power J, Desharnais FD, Duval M, et al. (1995) Influence of heavy chain constant regions on antigen binding and HIV-1 neutralization by a human monoclonal antibody. J Immunol 155: 3638–3644. pmid:7561063
[38]  Liu F, Bergami PL, Duval M, Kuhrt D, Posner M, et al. (2003) Expression and functional activity of isotype and subclass switched human monoclonal antibody reactive with the base of the V3 loop of HIV-1 gp120. AIDS Res Hum Retroviruses 19: 597–607. pmid:12908937 doi: 10.1089/088922203322230969
[39]  Miranda LR, Duval M, Doherty H, Seaman MS, Posner MR, et al. (2007) The neutralization properties of a HIV-specific antibody are markedly altered by glycosylation events outside the antigen-binding domain. J Immunol 178: 7132–7138. pmid:17513762 doi: 10.4049/jimmunol.178.11.7132
[40]  Boesch AW, Alter G, Ackerman ME (2015) Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Curr Opin HIV AIDS 10: 160–169. doi: 10.1097/COH.0000000000000149. pmid:25700208
[41]  Euler Z, Alter G (2015) Exploring the potential of monoclonal antibody therapeutics for HIV-1 eradication. AIDS Res Hum Retroviruses 31: 13–24. doi: 10.1089/AID.2014.0235. pmid:25385703
[42]  Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J (2012) HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 8: e1002739. doi: 10.1371/journal.ppat.1002739. pmid:22719248
[43]  Milligan C, Richardson BA, John-Stewart G, Nduati R, Overbaugh J (2015) Passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity in HIV-infected infants is associated with reduced mortality. Cell Host Microbe 17: 500–506. doi: 10.1016/j.chom.2015.03.002. pmid:25856755
[44]  Gomez-Roman VR, Florese RH, Patterson LJ, Peng B, Venzon D, et al. (2006) A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J Immunol Methods 308: 53–67. pmid:16343526 doi: 10.1016/j.jim.2005.09.018
[45]  Brown EP, Licht AF, Dugast AS, Choi I, Bailey-Kellogg C, et al. (2012) High-throughput, multiplexed IgG subclassing of antigen-specific antibodies from clinical samples. Journal of immunological methods 386: 117–123. doi: 10.1016/j.jim.2012.09.007. pmid:23023091
[46]  R Core Team (2014) R: A language and environment for statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133