全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis

DOI: 10.1371/journal.ppat.1005380

Full-Text   Cite this paper   Add to My Lib

Abstract:

T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and na?ve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (na?ve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.

References

[1]  Swain SL, Weinberg AD, English M. CD4+ T cell subsets. Lymphokine secretion of memory cells and of effector cells that develop from precursors in vitro. J Immunol. 1990;144: 1788–1799. pmid:1968490
[2]  Swain SL, Bradley LM, Croft M, Tonkonogy S, Atkins G, Weinberg AD, et al. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev. 1991;123: 115–144. pmid:1684776 doi: 10.1111/j.1600-065x.1991.tb00608.x
[3]  Jameson SC, Masopust D. Diversity in T Cell Memory: An Embarrassment of Riches. Immunity. Elsevier Inc; 2009;31: 859–871. doi: 10.1016/j.immuni.2009.11.007. pmid:20064446
[4]  Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272: 54–60. pmid:8600537 doi: 10.1126/science.272.5258.54
[5]  Vitetta ES, Berton MT, Burger C, Kepron M, Lee WT, Yin XM. Memory B and T cells. Annu Rev Immunol. 1991;9: 193–217. doi: 10.1146/annurev.iy.09.040191.001205. pmid:1910676
[6]  Vezys V, Masopust D, Kemball CC, Barber DL, O'Mara LA, Larsen CP, et al. Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J Exp Med. 2006;203: 2263–2269. doi: 10.1084/jem.20060995. pmid:16966427
[7]  West EE, Youngblood B, Tan WG, Jin H-T, Araki K, Alexe G, et al. Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load. Immunity. 2011;35: 285–298. doi: 10.1016/j.immuni.2011.05.017. pmid:21856186
[8]  Fine PE. Bacille Calmette-Guérin vaccines: a rough guide. CLIN INFECT DIS. 1995;20: 11–14. pmid:7727635 doi: 10.1093/clinids/20.1.11
[9]  Orme IM. Beyond BCG: the potential for a more effective TB vaccine. Mol Med Today. 1999;5: 487–492. pmid:10529790 doi: 10.1016/s1357-4310(99)01594-4
[10]  Orme IM. Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine. 2006;24: 2–19. doi: 10.1016/j.vaccine.2005.07.078. pmid:16139397
[11]  Henao-Tamayo M, Ordway DJ, Orme IM. Memory T cell subsets in tuberculosis: what should we be targeting? Tuberculosis (Edinb). 2014;94: 455–461. doi: 10.1016/j.tube.2014.05.001.
[12]  Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med. 2005;171: 1430–1435. doi: 10.1164/rccm.200409-1200OC. pmid:15831840
[13]  Crofts JP, Andrews NJ, Barker RD, Delpech V, Abubakar I. Risk factors for recurrent tuberculosis in England and Wales, 1998–2005. Thorax. BMJ Publishing Group Ltd and British Thoracic Society; 2010;65: 310–314. doi: 10.1136/thx.2009.124677. pmid:20388755
[14]  Millet J-P, Shaw E, Orcau à, Casals M, Miro JM, Caylà JA, et al. Tuberculosis recurrence after completion treatment in a European city: reinfection or relapse? Mokrousov I, editor. PLoS ONE. 2013;8: e64898. doi: 10.1371/journal.pone.0064898. pmid:23776440
[15]  Jung Y-J, Ryan L, LaCourse R, North RJ. Properties and protective value of the secondary versus primary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2005;201: 1915–1924. doi: 10.1084/jem.20050265. pmid:15955839
[16]  Kamath AB, Behar SM. Anamnestic responses of mice following Mycobacterium tuberculosis infection. Infect Immun. 2005;73: 6110–6118. doi: 10.1128/IAI.73.9.6110–6118.2005. pmid:16113332
[17]  Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. Springer Berlin Heidelberg; 2015;37: 239–249. doi: 10.1007/s00281-015-0490-8. pmid:25917388
[18]  Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA. 1992;89: 12013–12017. pmid:1465432 doi: 10.1073/pnas.89.24.12013
[19]  Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med. 1999;189: 1973–1980. pmid:10377193 doi: 10.1084/jem.189.12.1973
[20]  Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2001;193: 271–280. pmid:11157048 doi: 10.1084/jem.193.3.271
[21]  Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, et al. A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis. Bishai W, editor. PLoS Pathog. 2009;5: e1000392. doi: 10.1371/journal.ppat.1000392.g004. pmid:19381260
[22]  van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol. 2000;30: 3689–3698. doi: 10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2–4. pmid:11169412
[23]  Bruns H, Meinken C, Schauenberg P, H?rter G, Kern P, Modlin RL, et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest. American Society for Clinical Investigation; 2009;119: 1167–1177. doi: 10.1172/JCI38482. pmid:19381021
[24]  Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC, et al. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8? T cells. Izzo AA, editor. PLoS ONE. Public Library of Science; 2014;9: e97515. doi: 10.1371/journal.pone.0097515. pmid:24828674
[25]  Penn-Nicholson A, Geldenhuys H, Burny W, van der Most R, Day CL, Jongert E, et al. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine. 2015;33: 4025–4034. doi: 10.1016/j.vaccine.2015.05.088. pmid:26072017
[26]  Kagina BMN, Tameris MD, Geldenhuys H, Hatherill M, Abel B, Hussey GD, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. Elsevier Ltd; 2014;32: 5908–5917. doi: 10.1016/j.vaccine.2014.09.001. pmid:25218194
[27]  Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381: 1021–1028. doi: 10.1016/S0140-6736(13)60177-4. pmid:23391465
[28]  Axelsson-Robertson R, Weichold F, Sizemore D, Wulf M, Skeiky YAW, Sadoff J, et al. Extensive major histocompatibility complex class I binding promiscuity for Mycobacterium tuberculosis TB10.4 peptides and immune dominance of human leucocyte antigen (HLA)-B*0702 and HLA-B*0801 alleles in TB10.4 CD8 T-cell responses. Immunology. 2010;129: 496–505. doi: 10.1111/j.1365-2567.2009.03201.x. pmid:20002212
[29]  Woodworth JS, Wu Y, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. The Journal of Immunology. 2008;181: 8595–8603. pmid:19050279 doi: 10.4049/jimmunol.181.12.8595
[30]  Geldenhuys H, Mearns H, Miles DJC, Tameris M, Hokey D, Shi Z, et al. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial. Vaccine. 2015;33: 3592–3599. doi: 10.1016/j.vaccine.2015.05.036. pmid:26048780
[31]  Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003;48: 77–84. pmid:12657046 doi: 10.1046/j.1365-2958.2003.03425.x
[32]  Nunes-Alves C, Booty MG, Carpenter SM, Rothchild AC, Martin CJ, Desjardins D, et al. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection. Lewinsohn DM, editor. PLoS Pathog. 2015;11: e1004849. doi: 10.1371/journal.ppat.1004849. pmid:25945999
[33]  Lindenstr?m T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8? T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol. 2014;44: 1699–1709. doi: 10.1002/eji.201344358. pmid:24677089
[34]  Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med. 2004;199: 775–784. doi: 10.1084/jem.20031591. pmid:15007094
[35]  Cho HI, Celis E. Optimized Peptide Vaccines Eliciting Extensive CD8 T-Cell Responses with Therapeutic Antitumor Effects. Cancer Research. 2009;69: 9012–9019. doi: 10.1158/0008-5472.CAN-09-2019. pmid:19903852
[36]  Lee S, Stokes KL, Currier MG, Sakamoto K, Lukacs NW, Celis E, et al. Vaccine-elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19F-induced pathogenesis in BALB/c mice. Journal of virology. 2012;86: 13016–13024. doi: 10.1128/JVI.01770-12. pmid:23015695
[37]  Phoolcharoen W, Dye JM, Kilbourne J, Piensook K, Pratt WD, Arntzen CJ, et al. A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc Natl Acad Sci USA. 2011;108: 20695–20700. doi: 10.1073/pnas.1117715108. pmid:22143779
[38]  Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4: 1191–1198. doi: 10.1038/ni1009. pmid:14625547
[39]  Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity. 2007;27: 281–295. doi: 10.1016/j.immuni.2007.07.010. pmid:17723218
[40]  Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham Q-M, Zickovich JM, et al. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. The Journal of Immunology. American Association of Immunologists; 2011;187: 4967–4978. doi: 10.4049/jimmunol.1102335. pmid:21987662
[41]  Peperzak V, Veraar EAM, Xiao Y, Babala N, Thiadens K, Brugmans M, et al. CD8? T cells produce the chemokine CXCL10 in response to CD27/CD70 costimulation to promote generation of the CD8? effector T cell pool. The Journal of Immunology. 2013;191: 3025–3036. doi: 10.4049/jimmunol.1202222. pmid:23940275
[42]  Slütter B, Pewe LL, Kaech SM, Harty JT. Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells are critical for protection against influenza A virus. Immunity. 2013;39: 939–948. doi: 10.1016/j.immuni.2013.09.013. pmid:24238342
[43]  Kamath A, Woodworth JSM, Behar SM. Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J Immunol. 2006;177: 6361–6369. pmid:17056567 doi: 10.4049/jimmunol.177.9.6361
[44]  Baur K, Brinkmann K, Schweneker M, P?tzold J, Meisinger-Henschel C, Hermann J, et al. Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. Journal of virology. American Society for Microbiology; 2010;84: 8743–8752. doi: 10.1128/JVI.00604-10. pmid:20538860
[45]  Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507: 519–522. doi: 10.1038/nature12978. pmid:24531764
[46]  Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. Journal of Experimental Medicine. 2008;205: 105–115. doi: 10.1084/jem.20071367. pmid:18158321
[47]  Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. The Journal of Immunology. 2014;192: 2965–2969. doi: 10.4049/jimmunol.1400019. pmid:24591367
[48]  Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C, Higdon LE, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. Journal of Experimental Medicine. 2015;212: 715–728. doi: 10.1084/jem.20141518. pmid:25918344
[49]  Curtis MM, Rowell E, Shafiani S, Negash A, Urdahl KB, Wilson CB, et al. Fidelity of pathogen-specific CD4+ T cells to the Th1 lineage is controlled by exogenous cytokines, interferon-gamma expression, and pathogen lifestyle. Cell Host and Microbe. 2010;8: 163–173. doi: 10.1016/j.chom.2010.07.006. pmid:20709293
[50]  Shafiani S, Dinh C, Ertelt JM, Moguche AO, Siddiqui I, Smigiel KS, et al. Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to Interleukin-12. Immunity. 2013;38: 1261–1270. doi: 10.1016/j.immuni.2013.06.003. pmid:23791647
[51]  Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation. Journal of Experimental Medicine. 2014;211: 345–356. doi: 10.1084/jem.20131271. pmid:24493801
[52]  Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting Edge: Control of Mycobacterium tuberculosis Infection by a Subset of Lung Parenchyma-Homing CD4 T Cells. The Journal of Immunology. American Association of Immunologists; 2014;192: 1400019–2969. doi: 10.4049/jimmunol.1400019.
[53]  Martin MD, Condotta SA, Harty JT, Badovinac VP. Population dynamics of naive and memory CD8 T cell responses after antigen stimulations in vivo. The Journal of Immunology. 2012;188: 1255–1265. doi: 10.4049/jimmunol.1101579. pmid:22205031
[54]  Miyakoda M, Kimura D, Honma K, Kimura K, Yuda M, Yui K. Development of memory CD8+ T cells and their recall responses during blood-stage infection with Plasmodium berghei ANKA. The Journal of Immunology. American Association of Immunologists; 2012;189: 4396–4404. doi: 10.4049/jimmunol.1200781. pmid:23008449
[55]  Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346: 1339–1345. pmid:7475776 doi: 10.1016/s0140-6736(95)92348-9
[56]  van Rie A, Warren R, Richardson M, Victor TC, Gie RP, Enarson DA, et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med. 1999;341: 1174–1179. doi: 10.1056/NEJM199910143411602. pmid:10519895
[57]  Kedzierska K, La Gruta NL, Turner SJ, Doherty PC. Establishment and recall of CD8+ T-cell memory in a model of localized transient infection. Immunol Rev. Blackwell Publishing Ltd; 2006;211: 133–145. doi: 10.1111/j.0105-2896.2006.00386.x.
[58]  Sprent J, Tough DF. Lymphocyte life-span and memory. Science. 1994;265: 1395–1400. pmid:8073282 doi: 10.1126/science.8073282
[59]  Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response of na?ve and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 2000;1: 47–53. doi: 10.1038/76907. pmid:10881174
[60]  Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun. 2002;70: 4501–4509. pmid:12117962 doi: 10.1128/iai.70.8.4501-4509.2002
[61]  Tian T, Woodworth J, Sk?ld M, Behar SM. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol. 2005;175: 3268–3272. pmid:16116218 doi: 10.4049/jimmunol.175.5.3268
[62]  Wu Y, Woodworth JS, Shin DS, Morris SL, Behar SM. Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect Immun. 2008;76: 2249–2255. doi: 10.1128/IAI.00024-08. pmid:18332205
[63]  Derrick SC, Repique C, Snoy P, Yang AL, Morris S. Immunization with a DNA vaccine cocktail protects mice lacking CD4 cells against an aerogenic infection with Mycobacterium tuberculosis. Infect Immun. 2004;72: 1685–1692. doi: 10.1128/IAI.72.3.1685–1692.2004. pmid:14977976
[64]  Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ, Bahjat KS, et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci USA. National Acad Sciences; 2008;105: 14017–14022. doi: 10.1073/pnas.0805452105. pmid:18780790
[65]  Cukalac T, Chadderton J, Handel A, Doherty PC, Turner SJ, Thomas PG, et al. Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection. Proc Natl Acad Sci USA. National Acad Sciences; 2014;111: 1485–1490. doi: 10.1073/pnas.1323736111. pmid:24474775
[66]  Cho HI, Lee YR, Celis E. Interferon limits the effectiveness of melanoma peptide vaccines. Blood. 2011;117: 135–144. doi: 10.1182/blood-2010-08-298117. pmid:20889921
[67]  Lewinsohn DM, Grotzke JE, Heinzel AS, Zhu L, Ovendale PJ, Johnson M, et al. Secreted proteins from Mycobacterium tuberculosis gain access to the cytosolic MHC class-I antigen-processing pathway. J Immunol. 2006;177: 437–442. pmid:16785540 doi: 10.4049/jimmunol.177.1.437
[68]  Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol. 2000;165: 353–363. pmid:10861072 doi: 10.4049/jimmunol.165.1.353
[69]  Woodworth JS, Shin DS, Volman M, Nunes-Alves C, Fortune SM, Behar SM. Mycobacterium tuberculosis directs immunofocusing of CD8+ T cell responses despite vaccination. J Immunol. 2011;186: 1627–1637. doi: 10.4049/jimmunol.1002911. pmid:21178003
[70]  Bold TD, Banaei N, Wolf AJ, Ernst JD. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. Ramakrishnan L, editor. PLoS Pathog. Public Library of Science; 2011;7: e1002063. doi: 10.1371/journal.ppat.1002063. pmid:21637811
[71]  Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity. 2011;34: 807–819. doi: 10.1016/j.immuni.2011.03.022. pmid:21596592
[72]  Grace PS, Ernst JD. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo. The Journal of Immunology. American Association of Immunologists; 2015;: 1501494. doi: 10.4049/jimmunol.1501494.
[73]  Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. J INFECT DIS. Oxford University Press; 2014;210: 1928–1937. doi: 10.1093/infdis/jiu347. pmid:24943726
[74]  Lindenstr?m T, Knudsen NPH, Agger EM, Andersen P. Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. The Journal of Immunology. 2013;190: 6311–6319. doi: 10.4049/jimmunol.1300248. pmid:23677471
[75]  Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature. 2011;473: 523–527. doi: 10.1038/nature10003. pmid:21562493
[76]  Hansen SG, Piatak M, Ventura AB, Hughes CM, Gilbride RM, Ford JC, et al. Immune clearance of highly pathogenic SIV infection. Nature. 2013;502: 100–104. doi: 10.1038/nature12519. pmid:24025770
[77]  Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015;348: aaa8205–aaa8205. doi: 10.1126/science.aaa8205. pmid:26089520
[78]  Holst J, Szymczak-Workman AL, Vignali KM, Burton AR, Workman CJ, Vignali DAA. Generation of T-cell receptor retrogenic mice. Nat Protoc. 2006;1: 406–417. doi: 10.1038/nprot.2006.61. pmid:17406263
[79]  Fraser KA, Schenkel JM, Jameson SC, Vezys V, Masopust D. Preexisting high frequencies of memory CD8+ T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity. 2013;39: 171–183. doi: 10.1016/j.immuni.2013.07.003. pmid:23890070
[80]  Moon JJ, Chu HH, Hataye J, Pagán AJ, Pepper M, McLachlan JB, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4: 565–581. doi: 10.1038/nprot.2009.9. pmid:19373228
[81]  Lepore M, Kalinichenko A, Kalinicenko A, Colone A, Paleja B, Singhal A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun. 2014;5: 3866. doi: 10.1038/ncomms4866. pmid:24832684
[82]  Stewart JJ, Lee CY, Ibrahim S, Watts P, Shlomchik M, Weigert M, et al. A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol Immunol. 1997;34: 1067–1082. pmid:9519765 doi: 10.1016/s0161-5890(97)00130-2
[83]  Sherwood AM, Emerson RO, Scherer D, Habermann N, Buck K, Staffa J, et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer Immunol Immunother. Springer Berlin Heidelberg; 2013;62: 1453–1461. doi: 10.1007/s00262-013-1446-2. pmid:23771160

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413