全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?

DOI: 10.1371/journal.pcbi.1004689

Full-Text   Cite this paper   Add to My Lib

Abstract:

High-dose chemotherapy has long been advocated as a means of controlling drug resistance in infectious diseases but recent empirical studies have begun to challenge this view. We develop a very general framework for modeling and understanding resistance emergence based on principles from evolutionary biology. We use this framework to show how high-dose chemotherapy engenders opposing evolutionary processes involving the mutational input of resistant strains and their release from ecological competition. Whether such therapy provides the best approach for controlling resistance therefore depends on the relative strengths of these processes. These opposing processes typically lead to a unimodal relationship between drug pressure and resistance emergence. As a result, the optimal drug dose lies at either end of the therapeutic window of clinically acceptable concentrations. We illustrate our findings with a simple model that shows how a seemingly minor change in parameter values can alter the outcome from one where high-dose chemotherapy is optimal to one where using the smallest clinically effective dose is best. A review of the available empirical evidence provides broad support for these general conclusions. Our analysis opens up treatment options not currently considered as resistance management strategies, and it also simplifies the experiments required to determine the drug doses which best retard resistance emergence in patients.

References

[1]  Ehrlich P. Chemotherapeutics: Scientific principles, methods, and results. The Lancet. 1913;182:445–451. doi: 10.1016/s0140-6736(01)38705-6
[2]  Fleming A. Penicillin. Nobel lectures, physiology or medicine 1942–1962. Elsevier Publishing Company, Amsterdam; 1964.
[3]  Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance: what’s dosing got to do with it? Critical Care Medicine. 2008;36:2433–2440. pmid:18596628 doi: 10.1097/ccm.0b013e318180fe62
[4]  Abdul-Aziz MH, Lipman J, Mouton JW, Hope WW, Roberts JA. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: Optimizing efficacy and reducing resistance development. Seminars in Respiratory and Critical Care Medicine. 2015;36:136–153. doi: 10.1055/s-0034-1398490. pmid:25643277
[5]  Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clinical Infectious Diseases. 2001;33:S147–S156. doi: 10.1086/321841. pmid:11524712
[6]  Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. The Journal of Infectious Diseases. 2002;185:561–565. doi: 10.1086/338571. pmid:11865411
[7]  Drlica K, Zhao X. Mutant selection window hypothesis updated. Clinical Infectious Diseases. 2007;44:681–688. doi: 10.1086/511642. pmid:17278059
[8]  Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clinical Infectious Diseases. 2007;45:S129–S136. doi: 10.1086/519256. pmid:17683017
[9]  Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A, et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates. 2011;14:107–117. doi: 10.1016/j.drup.2011.02.005. pmid:21440486
[10]  Hastings I. Why we should effectively treat malaria. Trends in Parasitology. 2011;27:51–52. doi: 10.1016/j.pt.2010.10.003. pmid:21281927
[11]  Canton R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiology Reviews. 2011;35:977–991. doi: 10.1111/j.1574-6976.2011.00295.x. pmid:21722146
[12]  Ankomah P, Levin BR. Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proceedings of the National Academy of Science. 2014;111:8331–8338. doi: 10.1073/pnas.1400352111.
[13]  Read AF, Day T, Huijben S. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proceedings of the National Academy of Science. 2011;108:10871–10877. doi: 10.1073/pnas.1100299108.
[14]  Geli P, Laxminarayan R, Dunne M, Smith DL. One-Size-Fits-All? Optimizing treatment duration for bacterial infections. PLoS One. 2012;7:e29838. doi: 10.1371/journal.pone.0029838.
[15]  Huijben S, Bell AS, Sim DG, Salathe R, Tomasello D, Mideo N, et al. Aggressive chemotherapy and the selection of drug resistant pathogens. PLoS Pathogens. 2013;9:e1003578. doi: 10.1371/journal.ppat.1003578. pmid:24068922
[16]  Kouyos RD, Metcalf CJE, Birger R, Klein EY, zur Wiesch PA, Ankomah P, et al. The path of least resistance: aggressive or moderate treatment? Proceedings of the Royal Society, B. 2014;281:20140566. doi: 10.1098/rspb.2014.0566.
[17]  Schmidt LH, Walley A, Larson RD. The influence of the dosage regimen on the therapeutic activity and penicillin. Journal of Pharmacology and Experimental Therapeutics. 1949;96:258–268.
[18]  zur Wiesch PA, Kouyos R, Engelstader J, Regoes R, Bonhoeffer S. Population biological principles of drug-resistance evolution in infectious diseases. The Lancet, Infectious Diseases. 2011;11:236–247. doi: 10.1016/S1473-3099(10)70264-4. pmid:21371657
[19]  Day T, Huijben S, Read AF. Is selection relevant in the evolutionary emergence of drug resistance. Trends in Microbiology. 2015;23:126–133. doi: 10.1016/j.tim.2015.01.005. pmid:25680587
[20]  Coleman M. Human drug metabolism: An introduction. John Wiley and Sons, West Sussex, UK; 2010.
[21]  Ke R, Loverdo C, Qi H, Sun R, Lloyd-Smith JO. Rational design and adaptive management of combination therapies for Hepatitis C virus infection. PLOS Computational Biology. 2015;11:e1004040. doi: 10.1371/journal.pcbi.1004040. pmid:26125950
[22]  Obolski U, Hadany L. Implications of stress-induced genetic variation for minimizing multidrug resistance in bacteria. BMC Medicine. 2012;10:89. doi: 10.1186/1741-7015-10-89. pmid:22889082
[23]  Negri MC, Morosini MI, Loza E, Baquero F. In-vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus-pneumoniae populations. Antimicrobial Agents and Chemotherapy. 1994;38:122–125. doi: 10.1128/AAC.38.1.122. pmid:8141563
[24]  Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 2003;47:1604–1613. doi: 10.1128/AAC.47.5.1604-1613.2003. pmid:12709329
[25]  Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao X, Drlica K, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model the simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. Journal of Antimicrobial Chemotherapy. 2003;52:616–622. doi: 10.1093/jac/dkg401. pmid:12951352
[26]  Jumbe N, Louie A, Leary R, Liu WG, Deziel MR, Tam VH, et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. Journal of Clinical Investigation. 2003;112:275–285. doi: 10.1172/JCI16814. pmid:12865415
[27]  Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. Journal of Infectious Diseases. 2004;190:1642–1651. doi: 10.1086/424849. pmid:15478070
[28]  Firsov AA, Vostrov SN, Lubenko IY, Arzamastsev AP, Portnoy YA, Zinner SH. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent the selection of resistant Staphylococcus aureus in an in vitro model. Journal of Antimicrobial Chemotherapy. 2004;54:178–186. doi: 10.1093/jac/dkh242. pmid:15190041
[29]  Croisier DE, M Etienne M, Bergoin E, Charles PE, Lequeu C, Piroth L, et al. Mutant selection window in levofloxacin and moxifloxacin treatments of experimental pneumococcal pneumonia in a rabbit model of human therapy. Antimicrobial Agents and Chemotherapy. 2004;48:1699–1707. doi: 10.1128/AAC.48.5.1699-1707.2004. pmid:15105123
[30]  Etienne M, Croisier D, Charles PE, Lequeu C, Piroth L, Portier H, et al. Effect of low-level resistance on subsequent enrichment of fluoroquinolone-resistant Streptococcus pneumoniae in rabbits. Journal of Infectious Diseases. 2004;190:1472–1475. doi: 10.1086/423853. pmid:15378440
[31]  Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2005;49:4920–4927. doi: 10.1128/AAC.49.12.4920-4927.2005. pmid:16304153
[32]  Tam VH, Louie A, Deziel MR, Liu W, Leary R, Drusano GL. Bacterial-population responses to drug-selective pressure: examination of Garenoxacin’s effect on Pseudomonas aeruginosa. Journal of Infectious Diseases. 2005;192:420–428. doi: 10.1086/430611. pmid:15995955
[33]  Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro model. Journal of Antimicrobial Chemotherapy. 2006;58:1185–1192. doi: 10.1093/jac/dkl387. pmid:17028094
[34]  Cui JC, Liu YN, Wang R, Tong WH, Drlica K, Zhao XL. The mutant selection window in rabbits infected with Staphylococcus aureus. Journal of Infectious Diseases. 2006;194:1601–1608. doi: 10.1086/508752. pmid:17083047
[35]  Tam VH, Louie A, Deziel MR, Liu W, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrobial Agents and Chemotherapy. 2007;51:744–747. doi: 10.1128/AAC.00334-06. pmid:17116679
[36]  Gumbo T, Louie A, Deziel MR, Liu WG, Parsons LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrobial Agents and Chemotherapy. 2007;51:3781–3788. doi: 10.1128/AAC.01533-06. pmid:17724157
[37]  Bourgeois-Nicolaos N, Massias L, Couson B, Butel MJ, Andremont A, Doucet-Populaire F. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalis in vivo. Journal of Infectious Diseases. 2007;195:1480–1488. doi: 10.1086/513876. pmid:17436228
[38]  Goessens WHE, Mouton JW, ten Kate MT, Bijll AJ, Ott A, Bakker-Woudenberg I. Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. Journal of Antimicrobial Chemotherapy. 2007;59:507–516. doi: 10.1093/jac/dkl529. pmid:17289765
[39]  Stearne LET, Goessens WHF, OlofssonCars JW, Gyssens IC. Effect of dosing and dosing frequency on the efficacy of ceftizoxime and the emergence of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. Antimicrobial Agents and Chemotherapy. 2007;51:3605–3611. doi: 10.1128/AAC.01486-06. pmid:17646416
[40]  Zhu YL, Mei Q, Cheng J, Liu YY, Ye Y, Li JB. Testing the mutant selection window in rabbits infected with methicillin-resistant Staphylococcus aureus exposed to vancomycin. Journal of Antimicrobial Chemotherapy. 2012;67:2700–2706. doi: 10.1093/jac/dks280. pmid:22809703
[41]  Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, et al. The antibiotic resistance arrow of time: Efflux pump induction is a general first step in the evolution of Mycobacterial drug resistance. Antimicrobial Agents and Chemotherapy. 2012;56:4806–4815. doi: 10.1128/AAC.05546-11. pmid:22751536
[42]  Fantin B, Farinotti R, Thabaut A, Carbon C. Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy. 1994;33:563–569. doi: 10.1093/jac/33.3.563. pmid:8040120
[43]  Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrobial Agents and Chemotherapy. 1998;42:521–527. pmid:9517926
[44]  Negri MC, Lipsitch M, Blazquez J, Levin BR, Baquero F. Concentration-dependent selection of small phenotypic differences in TEM β-lactamase-mediated antibiotic resistance. Antimicrobial Agents and Chemotherapy. 2000;44:2485–2491. doi: 10.1128/AAC.44.9.2485-2491.2000. pmid:10952599
[45]  Wiuff C, Lykkesfeldt J, Svendsen O, Aarestrup FM. The effects of oral and intramuscular administration and dose escalation of enrofloxacin on the selection of quinolone resistance among Salmonella and coliforms in pigs. Research in Veterinary Science. 2003;75:185–193. doi: 10.1016/S0034-5288(03)00112-7. pmid:13129666
[46]  Wargo AR, Huijben S, de Roode JC, Shepherd J, Read AF. Competitive release and facilitation of drug resistant parasites following therapeutic chemotherapy in a rodent malaria model. Proceedings of the National Academy of Sciences. 2007;104:19914–19919. doi: 10.1073/pnas.0707766104.
[47]  Huijben S, Nelson WA, Wargo AR, Sim DG, Drew DR, Read AF. Chemotherapy, within-host ecology and the fitness of drug resistant malaria parasites. Evolution. 2010;64:2952–2968. doi: 10.1111/j.1558-5646.2010.01068.x. pmid:20584075
[48]  Gullberg E, Cao S, Berg OG, Ilback C, Sandergren L, Hughes D, et al. Selection of resistant bacteria a very low antibiotic concentrations. PLOS Pathogens. 2011;7:e1002158. doi: 10.1371/journal.ppat.1002158. pmid:21811410
[49]  Nguyen TT, Chachaty E, Huy C, Cambier C, de Gunzburg J, Mentre F, et al. Correlation between fecal concentrations of ciprofloxacin and fecal counts of resistant Enterobacteriaceae in piglets treated with ciprofloxacin: Toward new means to control the spread of resistance? Antimicrobial Agents and Chemotherapy. 2012;56:4973–4975. doi: 10.1128/AAC.06402-11. pmid:22751547
[50]  Pollitt LC, Huijben S, Sim DG, Salathe RM, Jones MJ, Read AF. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites. PLoS Pathogens. 2014;10:e1004019. doi: 10.1371/journal.ppat.1004019.
[51]  Vasseur MV, Laurentie M, Rolland JG, Perrin-Guyomard A, Henri J, Ferran AA, et al. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrobial Agents and Chemotherapy. 2014;58:1744–1748. doi: 10.1128/AAC.02135-13. pmid:24395228
[52]  Zhao X. Clarification of MPC and the mutant selection window concept. Journal of Antimicrobial Chemotherapy. 2003;52:731. doi: 10.1093/jac/dkg376. pmid:12972446
[53]  Firsov AA, Golikova MV, Strukova EN, Portnoy YA, Romanov AV, Edelstein MV, et al. In vitro resistance studies with bacteria that exhibit low mutation frequencies: Prediction of “antimutant” linezolid concentrations using a mixed inoculum containing both susceptible and sesistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 2015;59:1014–1019. doi: 10.1128/AAC.04214-14. pmid:25451050
[54]  Smith HJ, Nichol KA, Hoban DJ, Zhanel GG. Stretching the mutant prevention concentration (MPC) beyond its limits. Journal of Antimicrobial Chemotherapy. 2003;51:1323–1325. doi: 10.1093/jac/dkg255. pmid:12716780
[55]  Dong YZ, Zhao XL, Kreiswirth BN, Drlica K. Mutant prevention concentration as a measure of antibiotic potency: Studies with clinical isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 2000;44:2581–2584. doi: 10.1128/AAC.44.9.2581-2584.2000. pmid:10952625
[56]  Livermore DM. Overstretching the mutant prevention concentration. Journal of Antimicrobial Chemotherapy. 2003;52:732. doi: 10.1093/jac/dkg377. pmid:12972447
[57]  Modi SR, Collins JJ, Relman DA. Antibiotics and gut microbiota. Journal of Clinical Investigation. 2015;124:4212. doi: 10.1172/JCI72333.
[58]  Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults—A randomized trial. Journal of the American Medical Association. 2003;290:2588–2598. doi: 10.1001/jama.290.19.2588. pmid:14625336
[59]  Basoli A, Chirletti P, Cirino E, D’Ovidio NG, Doglietto GB, Giglio D, et al. A prospective, double-blind, multicenter, randomized trial comparing ertapenem 3 vs > = 5 days in community-acquired intraabdominal infection. Journal of Gastrointestinal Surgery. 2008;12:592–600. doi: 10.1007/s11605-007-0277-x. pmid:17846853
[60]  Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. Trial of short-course antimicrobial therapy for intraabdominal Infection. New England Journal of Medicine. 2015;372:1996–2005. doi: 10.1056/NEJMoa1411162. pmid:25992746
[61]  Rice LB. The Maxwell Finland lecture: For the duration—Rational antibiotic administration in an era of antimicrobial resistance and Clostridium difficile. Clinical Infectious Diseases. 2008;46:491–496. doi: 10.1086/526535. pmid:18194098
[62]  Aliberti S, Giuliani F, Ramirez J, Blasi F, Grp DS. How to choose the duration of antibiotic therapy in patients with pneumonia. Current Opinion in Infectious Diseases. 2015;28:177–184.pmid:25692271 doi: 10.1097/qco.0000000000000140
[63]  van den Bosch F, Paveley N, Shaw M, Hobbelen P, Oliver R. The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathology. 2011;60:597–606. doi: 10.1111/j.1365-3059.2011.02439.x.
[64]  Gatenby RA. A change of strategy in the war on cancer. Nature. 2009;459:508–509. doi: 10.1038/459508a. pmid:19478766

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133