全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities

DOI: 10.1371/journal.pcbi.1004686

Full-Text   Cite this paper   Add to My Lib

Abstract:

The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PPII) structure. While intrinsic PPII propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (Rh) can be predicted from experimental PPII propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that Rh and chain propensity for PPII structure are linked via a simple power-law scaling relationship, which was tested using the experimental Rh of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on Rh were found to be generally weak when compared to PPII effects on Rh. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PPII structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides.

References

[1]  Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inf Ser. 2000;11: 161–171.
[2]  Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J. 2007;92: 1439–1456. pmid:17158572 doi: 10.1529/biophysj.106.094045
[3]  Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337: 635–645. pmid:15019783 doi: 10.1016/j.jmb.2004.02.002
[4]  van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114: 6589–6631. doi: 10.1021/cr400525m. pmid:24773235
[5]  Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004;32: 1037–1049. pmid:14960716 doi: 10.1093/nar/gkh253
[6]  Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114: 6844–6879. doi: 10.1021/cr400713r. pmid:24830552
[7]  Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol. 2015;16: 18–29. doi: 10.1038/nrm3920. pmid:25531225
[8]  Babu MM, van der Lee R, de Groot NS, Gsponer J. Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol. 2011;21: 432–440. doi: 10.1016/j.sbi.2011.03.011. pmid:21514144
[9]  Iakoucheva LM, Brown CJ, Lawson JD, Obradovi? Z, Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002;323: 573–584. pmid:12381310 doi: 10.1016/s0022-2836(02)00969-5
[10]  Shi Z, Chen K, Liu Z, Kallenbach NR. Conformation of the backbone in unfolded proteins. Chem Rev. 2006;106: 1877–1897. pmid:16683759 doi: 10.1021/cr040433a
[11]  Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR. Polyproline II structure in a sequence of seven alanine residues. Proc Natl Acad Sci USA. 2002;99: 9190–9195. pmid:12091708 doi: 10.1073/pnas.112193999
[12]  Schweitzer-Stenner R. Conformational propensities and residual structures in unfolded peptides and proteins. Mol BioSyst. 2012;8: 122–133. doi: 10.1039/c1mb05225j. pmid:21879108
[13]  Müller-Sp?th S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S, Reymond L, Nettels D, Schuler B. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci USA. 2010;107: 14609–14614. doi: 10.1073/pnas.1001743107. pmid:20639465
[14]  Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci USA. 2010;107: 8183–8188. doi: 10.1073/pnas.0911107107. pmid:20404210
[15]  Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci USA. 2013;110: 13392–13397. doi: 10.1073/pnas.1304749110. pmid:23901099
[16]  Chen K, Liu Z, Kallenbach NR. The polyproline II conformation in short alanine peptides is noncooperative. Proc Natl Acad Sci USA. 2004;101: 15352–15357. pmid:15489268 doi: 10.1073/pnas.0406657101
[17]  Shi Z, Chen K, Liu Z, Ng A, Bracken WC, Kallenbach NR. Polyproline II propensities from GGXGG peptides reveal an anticorrelation with beta-sheet scales. Proc Natl Acad Sci USA. 2005;102: 17964–17968. pmid:16330763 doi: 10.1073/pnas.0507124102
[18]  Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP. Host-guest scale of left-handed polyproline II helix formation. Proteins 2003;53: 68–75. pmid:12945050 doi: 10.1002/prot.10477
[19]  Elam WA, Schrank TP, Campagnolo AJ, Hilser VJ. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites. Protein Sci. 2013;22: 405–417. doi: 10.1002/pro.2217. pmid:23341186
[20]  Cho JH, Sato S, Horng JC, Anil B, Raleigh DP. Electrostatic interactions in the denatured state ensemble: their effect upon protein folding and protein stability. Arch Biochem Biophys. 2008;469:20–28. pmid:17900519 doi: 10.1016/j.abb.2007.08.004
[21]  Cho JH, Raleigh DP. Mutational analysis demonstrates that specific electrostatic interactions can play a key role in the denatured state ensemble of proteins. J Mol Biol. 2005;353:174–185. pmid:16165156 doi: 10.1016/j.jmb.2005.08.019
[22]  Langridge TD, Tarver MJ, Whitten ST. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein. Proteins 2014;82: 668–678. doi: 10.1002/prot.24449. pmid:24150971
[23]  Perez RB, Tischer A, Auton M, Whitten ST. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins. Proteins 2014;82: 3373–3384. doi: 10.1002/prot.24692. pmid:25244701
[24]  Whitten ST, Yang HW, Fox RO, Hilser VJ. Exploring the impact of polyproline II (PII) conformational bias on the binding of peptides to the SEM-5 SH3 domain. Protein Sci. 2008;17: 1200–1211. doi: 10.1110/ps.033647.107. pmid:18577755
[25]  Richards FM. Areas, volumes, packing, and protein structure. Annu Rev Biophys Bioeng. 1977;6: 151–176. pmid:326146 doi: 10.1146/annurev.bb.06.060177.001055
[26]  Lowry DF, Stancik A, Shrestha RM, Daughdrill GW. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53. Proteins 2008;71: 587–598. pmid:17972286 doi: 10.1002/prot.21721
[27]  Donaldson L, Capone JP. Purification and characterization of the carboxyl-terminal transactivation domain of Vmw65 from herpes simplex virus type 1. J Biol Chem. 1992;267: 1411–1414. pmid:1309782
[28]  Sivakolundu SG, Nourse A, Moshiach S, Bothner B, Ashley C, Satumba J, Lahti J, Kriwacki RW. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo. J Mol Biol. 2008;384: 240–254. doi: 10.1016/j.jmb.2008.09.019. pmid:18809412
[29]  Yi S, Boys BL, Brickenden A, Konermann L, Choy WY. Effects of zinc binding on the structure and dynamics of the intrinsically disordered protein prothymosin alpha: evidence for metalation as an entropic switch. Biochemistry 2007;46: 13120–13130. pmid:17929838 doi: 10.1021/bi7014822
[30]  Sanchez-Puig N, Veprintsev DB, Fersht AR. Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 2005;17: 11–21. pmid:15629713 doi: 10.1016/j.molcel.2004.11.019
[31]  Campbell KM, Terrell AR, Laybourn PJ, Lumb KJ. Intrinsic structural disorder of the C-terminal activation domain from the bZIP transcription factor Fos. Biochemistry 2000;39: 2708–2713. pmid:10704222 doi: 10.1021/bi9923555
[32]  Geething NC, Spudich JA. Identification of a minimal myosin Va binding site within an intrinsically unstructured domain of melanophilin. J Biol Chem. 2007;282: 21518–21528. pmid:17513864 doi: 10.1074/jbc.m701932200
[33]  Soragni A, Zambelli B, Mukrasch MD, Biernat J, Jeganathan S, Griesinger C, Ciurli S, Mandelkow E, Zweckstetter M. Structural characterization of binding of Cu(II) to tau protein. Biochemistry 2008;47: 10841–10851. doi: 10.1021/bi8008856. pmid:18803399
[34]  Adkins JN, Lumb KJ. Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins 2002;46: 1–7. pmid:11746698 doi: 10.1002/prot.10018
[35]  Uversky VN, Permyakov SE, Zagranichny VE, Rodionov IL, Fink AL, Cherskaya AM, Wasserman LA, Permyakov EA. Effect of zinc and temperature on the conformation of the gamma subunit of retinal phosphodiesterase: a natively unfolded protein. J Proteome Res. 2002;1: 149–159. pmid:12643535 doi: 10.1021/pr0155127
[36]  Haaning S, Radutoiu S, Hoffmann SV, Dittmer J, Giehm L, Otzen DE, Stougaard J. An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J Biol Chem. 2008;283: 31142–31152. doi: 10.1074/jbc.M805024200. pmid:18779323
[37]  Permyakov SE, Millett IS, Doniach S, Permyakov EA, Uversky VN. Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins 2003;53: 855–862. pmid:14635127 doi: 10.1002/prot.10481
[38]  Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA, Lansbury PT Jr, Fernandez CO, Eliezer D, Zweckstetter M, Lashuel HA. Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem. 2008;283: 16895–16905. doi: 10.1074/jbc.M800747200. pmid:18343814
[39]  Baker JMR. Structural characterization and interactions of the CFTR regulatory region. Ph.D. Dissertation. University of Toronto. 2009.
[40]  Choi UB, McCann JJ, Weninger KR, Bowen ME. Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins. Structure 2011;19: 566–576. doi: 10.1016/j.str.2011.01.011. pmid:21481779
[41]  Magidovich E, Orr I, Fass D, Abdu U, Yifrach O. Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K1 channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci USA. 2007;104: 13022–13027. pmid:17666528 doi: 10.1073/pnas.0704059104
[42]  Sanchez-Puig N, Veprintsev DB, Fersht AR. Human full-length securin is a natively unfolded protein. Protein Sci. 2005;14: 1410–1418. pmid:15929994 doi: 10.1110/ps.051368005
[43]  Kjaergaard M, N?rholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II. Protein Sci. 2010;19: 1555–1564. doi: 10.1002/pro.435. pmid:20556825
[44]  Wuttke R, Hofmann H, Nettels D, Borgia MB, Mittal J, Best RB, Schuler B. Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc Natl Acad Sci USA. 2014;111: 5213–5218. doi: 10.1073/pnas.1313006111. pmid:24706910
[45]  Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ. Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 1999;38: 16424–16431. pmid:10600103 doi: 10.1021/bi991765q
[46]  Tcherkasskaya O, Davidson EA, Uversky VN. Biophysical constraints for protein structure prediction. J Proteome Res. 2003;2: 37–42. pmid:12643541 doi: 10.1021/pr025552q
[47]  Fitzkee NC, Rose GD. Reassessing random-coil statistics in unfolded proteins. Proc Natl Acad Sci USA. 2004;101: 12497–12502. pmid:15314216 doi: 10.1073/pnas.0404236101
[48]  Auton M, Ferreon ACM, Bolen DW. Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal. J Mol Biol. 2006;361:983–992. pmid:16889793 doi: 10.1016/j.jmb.2006.07.003
[49]  Marsh JA, Forman-Kay JD. Sequence determinants of compaction in intrinsically disordered proteins. Biophys J. 2010;98: 2383–2390. doi: 10.1016/j.bpj.2010.02.006. pmid:20483348
[50]  Cowan PM, McGavin S. Structure of poly-L-proline. Nature 1955; 176:501–503. doi: 10.1038/176501a0
[51]  Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart Appl Math. 1944;2: 164–168.
[52]  Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 1963;11: 431–441. doi: 10.1137/0111030
[53]  Brown AM, Zondlo NJ. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry 2012;51: 5041–5051. doi: 10.1021/bi3002924. pmid:22667692
[54]  Baldwin RL. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA. 1986;83: 8069–8072. pmid:3464944 doi: 10.1073/pnas.83.21.8069
[55]  Murphy KP, Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43: 313–361. pmid:1442323 doi: 10.1016/s0065-3233(08)60556-2
[56]  Murphy KP, Bhakuni V, Xie D, Freire E. Molecular basis of cooperativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol. 1992;227: 293–306. pmid:1522594 doi: 10.1016/0022-2836(92)90699-k
[57]  Lee KH, Xie D, Freire E, Amzel LM. Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation. Proteins 1994;20: 68–84. pmid:7824524 doi: 10.1002/prot.340200108
[58]  Xie D, Freire E. Structure based prediction of protein folding intermediates. J Mol Biol. 1994;242: 62–80. pmid:8078072 doi: 10.1006/jmbi.1994.1557
[59]  Gómez J, Hilser VJ, Xie D, Freire E. The heat capacity of proteins. Proteins 1995;22: 404–412. pmid:7479713 doi: 10.1002/prot.340220410
[60]  D’Aquino JA, Gómez J, Hilser VJ, Lee KH, Amzel LM, Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins 1996;25: 143–156. pmid:8811731 doi: 10.1002/prot.1
[61]  Habermann SM, Murphy KP. Energetics of hydrogen bonding in proteins: A model compound study. Protein Sci. 1996;5: 1229–1239. pmid:8819156 doi: 10.1002/pro.5560050702
[62]  Luque I, Mayorga OL, Freire E. Structure-based thermodynamic scale of alpha-helix propensities in amino acids. Biochemistry 1996;35: 13681–13688. pmid:8885848 doi: 10.1021/bi961319s
[63]  Malmberg CG, Maryott AA. Dielectric constant of water from 0 to 100C. J Res Natl Bur Stand. 1956;56: 1–8. doi: 10.6028/jres.056.001
[64]  Hamburger JB, Ferreon JC, Whitten ST, Hilser VJ. Thermodynamic mechanism and consequences of the polyproline II (PII) structural bias in the denatured states of proteins. Biochemistry 2004;43: 9790–9799. pmid:15274633 doi: 10.1021/bi049352z
[65]  Krimm S, Mark JE. Conformations of polypeptides with ionized side chains of equal length. Proc Natl Acad Sci USA. 1968;60: 1122–1129. pmid:16591670 doi: 10.1073/pnas.60.4.1122
[66]  Momany FA, McGuire RF, Burgess AW, Scheraga HA. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem. 1975;79: 2361–2381. doi: 10.1021/j100589a006
[67]  Mandel N, Mandel G, Trus BL, Rosenberg J, Carlson G, Dickerson RE. Tuna cytochrome c at 2.0 ? resolution. III. Coordinate optimization and comparison of structures. J Biol Chem. 1977;252: 4619–4636. pmid:194885

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133