全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

DOI: 10.1371/journal.pcbi.1004663

Full-Text   Cite this paper   Add to My Lib

Abstract:

The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives.

References

[1]  Nicholls H. (2006) Pandemic influenza: the inside story. PLoS Biol 4: e50. pmid:16464130 doi: 10.1371/journal.pbio.0040050
[2]  Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, et al. (2013) Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Med 10: e1001558. doi: 10.1371/journal.pmed.1001558. pmid:24302890
[3]  Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428. doi: 10.1038/nature10831. pmid:22722205
[4]  Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541. doi: 10.1126/science.1213362. pmid:22723413
[5]  Flannery B, Thaker SN, Clippard J, Monto AS, Ohmit SE, et al. (2014) Interim estimates of 2013–14 seasonal influenza vaccine effectiveness—United States, February 2014. MMWR Morb Mortal Wkly Rep 63: 137–142. pmid:24553196
[6]  De Clercq E. (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 5: 1015–1025. pmid:17139286 doi: 10.1038/nrd2175
[7]  Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, et al. (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 366: 1175–1181. pmid:16198766 doi: 10.1016/s0140-6736(05)67338-2
[8]  Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI. (2006) Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 295: 891–894. pmid:16456087 doi: 10.1001/jama.295.8.joc60020
[9]  Centers for Disease Control and Prevention (CDC). (2010) Update: influenza activity—United States, 2009–10 season. MMWR Morb Mortal Wkly Rep 59: 901–908. pmid:20671661
[10]  Stephenson I, Democratis J, Lackenby A, McNally T, Smith J, et al. (2009) Neuraminidase inhibitor resistance after oseltamivir treatment of acute influenza A and B in children. Clin Infect Dis 48: 389–396. doi: 10.1086/596311. pmid:19133796
[11]  Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, et al. (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364: 759–765. pmid:15337401 doi: 10.1016/s0140-6736(04)16934-1
[12]  Hatakeyama S, Sugaya N, Ito M, Yamazaki M, Ichikawa M, et al. (2007) Emergence of influenza B viruses with reduced sensitivity to neuraminidase inhibitors. JAMA 297: 1435–1442. pmid:17405969 doi: 10.1001/jama.297.13.1435
[13]  Inoue M, Barkham T, Leo YS, Chan KP, Chow A, et al. (2010) Emergence of oseltamivir-resistant pandemic (H1N1) 2009 virus within 48 hours. Emerg Infect Dis 16: 1633–1636. doi: 10.3201/eid1610.100688. pmid:20875299
[14]  van der Vries E, Stelma FF, Boucher CA. (2010) Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363: 1381–1382. doi: 10.1056/NEJMc1003749. pmid:20879894
[15]  Nguyen HT, Fry AM, Loveless PA, Klimov AI, Gubareva LV. (2010) Recovery of a multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a dual H275Y/I223R mutation from a child after prolonged treatment with oseltamivir. Clin Infect Dis 51: 983–984. doi: 10.1086/656439. pmid:20858074
[16]  Oh DY, Hurt AC. (2014) A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade. Scientifica (Cairo) 2014: 430629. doi: 10.1155/2014/430629
[17]  Hopkins AL, Groom CR. (2002) The druggable genome. Nat Rev Drug Discov 1: 727–730. pmid:12209152 doi: 10.1038/nrd892
[18]  Dancey J, Sausville EA. (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2: 296–313. pmid:12669029 doi: 10.1038/nrd1066
[19]  Wu Y, Zhang G, Li Y, Jin Y, Dale R, et al. (2008) Inhibition of highly pathogenic avian H5N1 influenza virus replication by RNA oligonucleotides targeting NS1 gene. Biochem Biophys Res Commun 365: 369–374. pmid:17996729 doi: 10.1016/j.bbrc.2007.10.196
[20]  Abe T, Mizuta T, Suzuki S, Hatta T, Takai K, et al. (1999) In vitro and in vivo anti-influenza A virus activity of antisense oligonucleotides. Nucleosides Nucleotides 18: 1685–1688. pmid:10474246 doi: 10.1080/07328319908044823
[21]  Duan M, Zhou Z, Lin RX, Yang J, Xia XZ, et al. (2008) In vitro and in vivo protection against the highly pathogenic H5N1 influenza virus by an antisense phosphorothioate oligonucleotide. Antivir Ther 13: 109–114.
[22]  Sui HY, Zhao GY, Huang JD, Jin DY, Yuen KY, et al. (2009) Small Interfering RNA Targeting M2 Gene Induces Effective and Long Term Inhibition of Influenza A Virus Replication. PLoS One 4: e5671. doi: 10.1371/journal.pone.0005671. pmid:19479060
[23]  Giannecchini S, Clausi V, Nosi D, Azzi A. (2009) Oligonucleotides derived from the packaging signal at the 5’ end of the viral PB2 segment specifically inhibit influenza virus in vitro. Arch Virol 154: 821–832. doi: 10.1007/s00705-009-0380-2. pmid:19370391
[24]  Kwok T, Helfer H, Alam MI, Heinrich J, Pavlovic J, et al. (2009) Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides. Arch Virol 154: 109–114. doi: 10.1007/s00705-008-0262-z. pmid:19034603
[25]  Abrahamyan A, Nagy E, Golovan SP. (2009) Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antiviral Res 84: 159–167. doi: 10.1016/j.antiviral.2009.08.009. pmid:19737578
[26]  de Vries W, Haasnoot J, Fouchier R, de Haan P, Berkhout B. (2009) Differential RNA silencing suppression activity of NS1 proteins from different influenza A virus strains. J Gen Virol 90: 1916–1922. doi: 10.1099/vir.0.008284-0. pmid:19369407
[27]  Gabriel G, Nordmann A, Stein DA, Iversen PL, Klenk HD. (2008) Morpholino oligomers targeting the PB1 and NP genes enhance the survival of mice infected with highly pathogenic influenza A H7N7 virus. J Gen Virol 89: 939–948. doi: 10.1099/vir.0.83449-0. pmid:18343835
[28]  Lupfer C, Stein DA, Mourich DV, Tepper SE, Iversen PL, et al. (2008) Inhibition of influenza A H3N8 virus infections in mice by morpholino oligomers. Arch Virol 153: 929–937. doi: 10.1007/s00705-008-0067-0. pmid:18369525
[29]  Zhou H, Jin M, Yu Z, Xu X, Peng Y, et al. (2007) Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res 76: 186–193. pmid:17719657 doi: 10.1016/j.antiviral.2007.07.002
[30]  Ge Q, Pastey M, Kobasa D, Puthavathana P, Lupfer C, et al. (2006) Inhibition of multiple subtypes of influenza A virus in cell cultures with morpholino oligomers. Antimicrob Agents Chemother 50: 3724–3733. pmid:16966399 doi: 10.1128/aac.00644-06
[31]  Tompkins SM, Lo CY, Tumpey TM, Epstein SL. (2004) Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA 101: 8682–8686. pmid:15173583 doi: 10.1073/pnas.0402630101
[32]  Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, et al. (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 101: 8676–8681. pmid:15173599 doi: 10.1073/pnas.0402486101
[33]  Plehn-Dujowich D, Altman S. (1998) Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P. Proc Natl Acad Sci USA 95: 7327–7332. pmid:9636148 doi: 10.1073/pnas.95.13.7327
[34]  Leiter JM, Agrawal S, Palese P, Zamecnik PC. (1990) Inhibition of influenza virus replication by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 87: 3430–3434. pmid:2333292 doi: 10.1073/pnas.87.9.3430
[35]  Zhang T, Wang TC, Zhao PS, Liang M, Gao YW, et al. (2011) Antisense oligonucleotides targeting the RNA binding region of the NP gene inhibit replication of highly pathogenic avian influenza virus H5N1. Int Immunopharmacol 11: 2057–2061. doi: 10.1016/j.intimp.2011.08.019. pmid:21933722
[36]  García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, et al. (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324–330. pmid:9878611 doi: 10.1006/viro.1998.9508
[37]  van Wielink R, Harmsen MM, Martens DE, Peeters BP, Wijffels RH, et al. (2011) MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. Vaccine 29: 6976–6985. doi: 10.1016/j.vaccine.2011.07.037. pmid:21787829
[38]  van Wielink R, Harmsen MM, Martens DE, Peeters BP, Wijffels RH, et al. (2012) Mutations in the M-gene segment can substantially increase replication efficiency of NS1 deletion influenza A virus in MDCK cells. J Virol 86: 12341–12350. doi: 10.1128/JVI.01725-12. pmid:22951840
[39]  Watanabe T, Watanabe S, Ito H, Kida H, Kawaoka Y. (2001) Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol 75: 5656–5662. pmid:11356973 doi: 10.1128/jvi.75.12.5656-5662.2001
[40]  Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA. (2002) Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 76: 1391–1399. pmid:11773413 doi: 10.1128/jvi.76.3.1391-1399.2002
[41]  Hughes MT, Matrosovich M, Rodgers ME, McGregor M, Kawaoka Y. (2000) Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. J Virol 74: 5206–5212. pmid:10799596 doi: 10.1128/jvi.74.11.5206-5212.2000
[42]  Liu C, Eichelberger MC, Compans RW, Air GM. (1995) Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol 69: 1099–1106. pmid:7815489
[43]  Kole R, Krainer AR, Altman S. (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11: 125–140. doi: 10.1038/nrd3625. pmid:22262036
[44]  Pramono ZA, Wee KB, Wang JL, Chen YJ, Xiong QB, et al. (2012) A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene. Hum Gene Ther 23: 781–790. doi: 10.1089/hum.2011.205. pmid:22486275
[45]  Worobey M, Han GZ, Rambaut A. (2014) A synchronized global sweep of the internal genes of modern avian influenza virus. Nature 508: 254–257. doi: 10.1038/nature13016. pmid:24531761
[46]  Nagarajan N, Kingsford C. (2011) GiRaF: robust, computational identification of influenza reassortments via graph mining. Nucleic Acids Res 39: e34. doi: 10.1093/nar/gkq1232. pmid:21177643
[47]  Campitelli L, Di Martino A, Spagnolo D, Smith GJ, Di Trani L, et al. (2008) Molecular analysis of avian H7 influenza viruses circulating in Eurasia in 1999–2005: detection of multiple reassortant virus genotypes. J Gen Virol 89: 48–59. pmid:18089728 doi: 10.1099/vir.0.83111-0
[48]  Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, et al. (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 337: 725–733. pmid:9287227 doi: 10.1056/nejm199709113371101
[49]  Jackson AL, Linsley PS. (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67. doi: 10.1038/nrd3010. pmid:20043028
[50]  Aartsma-Rus A, De Winter CL, Janson AA, Kaman WE, van Ommen GJ, et al. (2005) Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites. Oligonucleotides 15: 284–297. pmid:16396622 doi: 10.1089/oli.2005.15.284
[51]  Popplewell LJ, Trollet C, Dickson G, Graham IR. (2009) Design of phosphorodiamidate morpholino oligomers (PMOs) for the induction of exon skipping of the human DMD gene. Mol Ther 17: 554–561. doi: 10.1038/mt.2008.287. pmid:19142179
[52]  Harding PL, Fall AM, Honeyman K, Fletcher S, Wilton SD. (2007) The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 15: 157–166. pmid:17164787 doi: 10.1038/sj.mt.6300006
[53]  Cullen BR. (2014) Viruses and RNA Interference: Issues and Controversies. J Virol 88: 12934–12936. doi: 10.1128/JVI.01179-14. pmid:25210170
[54]  Wee KB, Pramono ZA, Wang JL, MacDorman KF, Lai PS, et al. (2008) Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides. PLoS One 3: e1844. doi: 10.1371/journal.pone.0001844. pmid:18365002
[55]  Tan J, Kuchibhatla D, Sirota FL, Sherman WA, Gattermayer T, et al. (2012) Tachyon search speeds up retrieval of similar sequences by several orders of magnitude. Bioinformatics 28: 1645–1646. doi: 10.1093/bioinformatics/bts197. pmid:22531216
[56]  Li W, Godzik A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13: 1658–1659. pmid:16731699 doi: 10.1093/bioinformatics/btl158
[57]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. pmid:9254694 doi: 10.1093/nar/25.17.3389
[58]  Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 6062–6067. pmid:15075390 doi: 10.1073/pnas.0400782101

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133