全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

DOI: 10.1371/journal.pcbi.1004604

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments.

References

[1]  Jorgensen Paul and Tyers Mike. How cells coordinate growth and division. Curr Biol, 14(23):R1014–R1027, Dec 2004. doi: 10.1016/j.cub.2004.11.027.
[2]  Ferrezuelo Francisco, Colomina Neus, Palmisano Alida, Gari Eloi, Gallego Carme, Csikasz-Nagy Attila, and Aldea Marti. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun, 3:1012, 2012. doi: 10.1038/ncomms2015.
[3]  Di Talia Stefano, Skotheim Jan M., Bean James M., Siggia Eric D., and Cross Frederick R.. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature, 448(7156):947–951, Aug 2007. doi: 10.1038/nature06072.
[4]  Pruyne David, Legesse-Miller Aster, Gao Lina, Dong Yuqing, and Bretscher Anthony. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol, 20:559–591, 2004. doi: 10.1146/annurev.cellbio.20.010403.103108.
[5]  Tyson John J and Novak Bela. Temporal organization of the cell cycle. Curr Biol, 18(17):R759–R768, Sep 2008. doi: 10.1016/j.cub.2008.07.001.
[6]  Csikasz-Nagy Attila, Kapuy Orsolya, Toth Attila, Pal Csaba, Jensen Lars Juhl, Uhlmann Frank, Tyson John J, and Novak Bela. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation. Mol Syst Biol, 5:236, 2009. doi: 10.1038/msb.2008.73.
[7]  Bertoli Cosetta, Skotheim Jan M., and de Bruin Robertus A M.. Control of cell cycle transcription during g1 and s phases. Nat Rev Mol Cell Biol, 14(8):518–528, Aug 2013. doi: 10.1038/nrm3629.
[8]  Barberis Matteo, Pagano Mario A., De Gioia Luca, Marin Oriano, Vanoni Marco, Pinna Lorenzo A., and Alberghina Lilia. Ck2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor sic1. Biochem Biophys Res Commun, 336(4):1040–1048, Nov 2005. doi: 10.1016/j.bbrc.2005.08.224.
[9]  Pines Jonathon. Cubism and the cell cycle: the many faces of the apc/c. Nat Rev Mol Cell Biol, 12(7):427–438, Jul 2011. doi: 10.1038/nrm3132.
[10]  Johnston G. C., Ehrhardt C. W., Lorincz A., and Carter B. L.. Regulation of cell size in the yeast saccharomyces cerevisiae. J Bacteriol, 137(1):1–5, Jan 1979. pmid:368010
[11]  Barbet N. C., Schneider U., Helliwell S. B., Stansfield I., Tuite M. F., and Hall M. N.. Tor controls translation initiation and early g1 progression in yeast. Mol Biol Cell, 7(1):25–42, Jan 1996. doi: 10.1091/mbc.7.1.25. pmid:8741837
[12]  Brauer Matthew J., Huttenhower Curtis, Airoldi Edoardo M., Rosenstein Rachel, Matese John C., Gresham David, Boer Viktor M., Troyanskaya Olga G., and Botstein David. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell, 19(1):352–367, Jan 2008. doi: 10.1091/mbc.E07-08-0779.
[13]  Zaman Shadia, Lippman Soyeon Im, Zhao Xin, and Broach James R. How saccharomyces responds to nutrients. Annu Rev Genet, 42:27–81, 2008. doi: 10.1146/annurev.genet.41.110306.130206.
[14]  Zaman Shadia, Lippman Soyeon I., Schneper Lisa, Slonim Noam, and Broach James R.. Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol, 5:245, 2009. doi: 10.1038/msb.2009.2.
[15]  Cai Ling and Tu Benjamin P.. Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol, 28:59–87, Nov 2012. doi: 10.1146/annurev-cellbio-092910-154010.
[16]  Broach James R.. Nutritional control of growth and development in yeast. Genetics, 192(1):73–105, Sep 2012. doi: 10.1534/genetics.111.135731.
[17]  Jorgensen Paul, Nishikawa Joy L, Breitkreutz Bobby-Joe, and Tyers Mike. Systematic identification of pathways that couple cell growth and division in yeast. Science, 297(5580):395–400, Jul 2002. doi: 10.1126/science.1070850.
[18]  Jorgensen Paul, Rupes Ivan, Sharom Jeffrey R., Schneper Lisa, Broach James R., and Tyers Mike. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev, 18(20):2491–2505, Oct 2004. doi: 10.1101/gad.1228804.
[19]  Hohmann Stefan. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 66(2):300–372, Jun 2002. doi: 10.1128/MMBR.66.2.300-372.2002.
[20]  Adrover Miquel àngel, Zi Zhike, Duch Alba, Schaber Jorg, Gonzalez-Novo Alberto, Jimenez Javier, Nadal-Ribelles Mariona, Clotet Josep, Klipp Edda, and Posas Francesc. Time-dependent quantitative multicomponent control of the g1-s network by the stress-activated protein kinase hog1 upon osmostress. Sci Signal, 4(192):ra63, Sep 2011. doi: 10.1126/scisignal.2002204.
[21]  Spriggs Keith A., Bushell Martin, and Willis Anne E.. Translational regulation of gene expression during conditions of cell stress. Mol Cell, 40(2):228–237, Oct 2010. doi: 10.1016/j.molcel.2010.09.028.
[22]  Tu Benjamin P., Kudlicki Andrzej, Rowicka Maga, and McKnight Steven L.. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 310(5751):1152–1158, Nov 2005. doi: 10.1126/science.1120499.
[23]  Slavov Nikolai and Botstein David. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell, 22(12):1997–2009, Jun 2011. doi: 10.1091/mbc.E11-02-0132.
[24]  Charvin G., Cross F. R., and Siggia E. D.. Forced periodic expression of g1 cyclins phase-locks the budding yeast cell cycle. Proc Natl Acad Sci U S A, 106(16):6632–6637, Apr 2009. doi: 10.1073/pnas.0809227106. pmid:19346485
[25]  Tyson J. J.. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A, 88(16):7328–7332, Aug 1991. doi: 10.1073/pnas.88.16.7328. pmid:1831270
[26]  Chen K. C., Csikasz-Nagy A., Gyorffy B., Val J., Novak B., and Tyson J. J.. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell, 11(1):369–391, Jan 2000. doi: 10.1091/mbc.11.1.369. pmid:10637314
[27]  Chen Katherine C., Calzone Laurence, Csikasz-Nagy Attila, Cross Frederick R., Novak Bela, and Tyson John J.. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell, 15(8):3841–3862, Aug 2004. doi: 10.1091/mbc.E03-11-0794.
[28]  Csikasz-Nagy Attila, Battogtokh Dorjsuren, Chen Katherine C., Novak Bela, and Tyson John J.. Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J, 90(12):4361–4379, Jun 2006. doi: 10.1529/biophysj.106.081240.
[29]  Barberis Matteo, Klipp Edda, Vanoni Marco, and Alberghina Lilia. Cell size at s phase initiation: an emergent property of the g1/s network. PLoS Comput Biol, 3(4):e64, Apr 2007. doi: 10.1371/journal.pcbi.0030064.
[30]  Barik Debashis, Baumann William T, Paul Mark R, Novak Bela, and Tyson John J. A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol, 6:405, Aug 2010. doi: 10.1038/msb.2010.55.
[31]  Gérard Claude, Tyson John J., Coudreuse Damien, and Novák Béla. Cell cycle control by a minimal cdk network. PLoS Comput Biol, 11(2):e1004056, Feb 2015. doi: 10.1371/journal.pcbi.1004056.
[32]  Rand D. A., Shulgin B. V., Salazar J. D., and Millar A. J.. Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. J Theor Biol, 238(3):616–635, Feb 2006. doi: 10.1016/j.jtbi.2005.06.026. pmid:16111710
[33]  Pfeuty Benjamin, Thommen Quentin, and Lefranc Marc. Robust entrainment of circadian oscillators requires specific phase response curves. Biophys J, 100(11):2557–2565, Jun 2011. doi: 10.1016/j.bpj.2011.04.043.
[34]  Pfeuty Benjamin and Kaneko Kunihiko. Minimal requirements for robust cell size control in eukaryotic cells. Phys Biol, 4(3):194–204, Sep 2007. doi: 10.1088/1478-3975/4/3/006.
[35]  Battogtokh Dorjsuren and Tyson John J.. Bifurcation analysis of a model of the budding yeast cell cycle. Chaos, 14(3):653–661, Sep 2004. doi: 10.1063/1.1780011.
[36]  Spiesser Thomas W., Müller Christiane, Schreiber Gabriele, Krantz Marcus, and Klipp Edda. Size homeostasis can be intrinsic to growing cell populations and explained without size sensing or signalling. FEBS J, 279(22):4213–4230, Nov 2012. doi: 10.1111/febs.12014.
[37]  de Bruin Robertus A M., McDonald W Hayes, Kalashnikova Tatyana I., Yates John 3rd, and Wittenberg Curt. Cln3 activates g1-specific transcription via phosphorylation of the sbf bound repressor whi5. Cell, 117(7):887–898, Jun 2004. doi: 10.1016/j.cell.2004.05.025. pmid:15210110
[38]  Costanzo Michael, Nishikawa Joy L., Tang Xiaojing, Millman Jonathan S., Schub Oliver, Breitkreuz Kevin, Dewar Danielle, Rupes Ivan, Andrews Brenda, and Tyers Mike. Cdk activity antagonizes whi5, an inhibitor of g1/s transcription in yeast. Cell, 117(7):899–913, Jun 2004. doi: 10.1016/j.cell.2004.05.024. pmid:15210111
[39]  Bean James M., Siggia Eric D., and Cross Frederick R.. Coherence and timing of cell cycle start examined at single-cell resolution. Mol Cell, 21(1):3–14, Jan 2006. doi: 10.1016/j.molcel.2005.10.035.
[40]  Vinod P. K., Freire Paula, Rattani Ahmed, Ciliberto Andrea, Uhlmann Frank, and Novak Bela. Computational modelling of mitotic exit in budding yeast: the role of separase and cdc14 endocycles. J R Soc Interface, 8(61):1128–1141, Aug 2011. doi: 10.1098/rsif.2010.0649. pmid:21288956
[41]  Hancioglu Baris and Tyson John J.. A mathematical model of mitotic exit in budding yeast: the role of polo kinase. PLoS One, 7(2):e30810, 2012. doi: 10.1371/journal.pone.0030810. pmid:22383977
[42]  Rand D. A., Shulgin B. V., Salazar D., and Millar A. J.. Design principles underlying circadian clocks. J R Soc Interface, 1(1):119–130, Nov 2004. doi: 10.1098/rsif.2004.0014. pmid:16849158
[43]  Lovrics Anna, Csikasz-Nagy Attila, Zsely Istvan Gy, Zador Judit, Turanyi Tamas, and Novak Bela. Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinformatics, 7:494, 2006. doi: 10.1186/1471-2105-7-494. pmid:17094799
[44]  Lovrics A, Zsély I Gy, Csikász-Nagy A, Zádor J, Turányi T, and Novák B. Analysis of a budding yeast cell cycle model using the shapes of local sensitivity functions. International Journal of Chemical Kinetics, 40(11):710–720, 2008. doi: 10.1002/kin.20366.
[45]  Winfree A.T. The Geometry of Biological Time. Interdisciplinary Applied Mathematics. Springer New York, 2001.
[46]  Soma Shivatheja, Yang Kailu, Morales Maria I, and Polymenis Michael. Multiple metabolic requirements for size homeostasis and initiation of division in saccharomyces cerevisiae. Microbial Cell, 1(8):256–266, 2014. doi: 10.15698/mic2014.08.160.
[47]  Polymenis M. and Schmidt E. V.. Coupling of cell division to cell growth by translational control of the g1 cyclin cln3 in yeast. Genes Dev, 11(19):2522–2531, Oct 1997. doi: 10.1101/gad.11.19.2522. pmid:9334317
[48]  Wang Chun-Chao, Cirit Murat, and Haugh Jason M. Pi3k-dependent cross-talk interactions converge with ras as quantifiable inputs integrated by erk. Mol Syst Biol, 5:246, 2009. doi: 10.1038/msb.2009.4. pmid:19225459
[49]  W?sch Ralph and Cross Frederick R.. Apc-dependent proteolysis of the mitotic cyclin clb2 is essential for mitotic exit. Nature, 418(6897):556–562, Aug 2002. doi: 10.1038/nature00856.
[50]  Tyson C. B., Lord P. G., and Wheals A. E.. Dependency of size of saccharomyces cerevisiae cells on growth rate. J Bacteriol, 138(1):92–98, Apr 1979. pmid:374379
[51]  Vanoni M., Vai M., Popolo L., and Alberghina L.. Structural heterogeneity in populations of the budding yeast saccharomyces cerevisiae. J Bacteriol, 156(3):1282–1291, Dec 1983. pmid:6358196
[52]  Soifer Ilya and Barkai Naama. Systematic identification of cell size regulators in budding yeast. Mol Syst Biol, 10:761, 2014. doi: 10.15252/msb.20145345. pmid:25411401
[53]  Drapkin Benjamin J, Lu Ying, Procko Andrea L, Timney Benjamin L, and Cross Frederick R. Analysis of the mitotic exit control system using locked levels of stable mitotic cyclin. Mol Syst Biol, 5:328, 2009. doi: 10.1038/msb.2009.78. pmid:19920813
[54]  Johnston G. C. and Singer R. A.. Ribosomal precursor rna metabolism and cell division in the yeast saccharomyces cerevisiae. Mol Gen Genet, 178(2):357–360, 1980. doi: 10.1007/BF00270484. pmid:6993845
[55]  Rowley A., Johnston G. C., Butler B., Werner-Washburne M., and Singer R. A.. Heat shock-mediated cell cycle blockage and g1 cyclin expression in the yeast saccharomyces cerevisiae. Mol Cell Biol, 13(2):1034–1041, Feb 1993. doi: 10.1128/MCB.13.2.1034. pmid:8380888
[56]  Bellí G., Garí E., Aldea M., and Herrero E.. Osmotic stress causes a g1 cell cycle delay and downregulation of cln3/cdc28 activity in saccharomyces cerevisiae. Mol Microbiol, 39(4):1022–1035, Feb 2001. doi: 10.1046/j.1365-2958.2001.02297.x. pmid:11251821
[57]  Gerald Jonathan N Fitz, Benjamin Jacqueline M., and Kron Stephen J.. Robust g1 checkpoint arrest in budding yeast: dependence on dna damage signaling and repair. J Cell Sci, 115(Pt 8):1749–1757, Apr 2002. pmid:11950891
[58]  O’Duibhir Eoghan, Lijnzaad Philip, Benschop Joris J., Lenstra Tineke L., van Leenen Dik, Groot Koerkamp Marian J A., Margaritis Thanasis, Brok Mariel O., Kemmeren Patrick, and Holstege Frank C P.. Cell cycle population effects in perturbation studies. Mol Syst Biol, 10:732, 2014. doi: 10.15252/msb.20145172.
[59]  Lu Ying and Cross Frederick R.. Periodic cyclin-cdk activity entrains an autonomous cdc14 release oscillator. Cell, 141(2):268–279, Apr 2010. doi: 10.1016/j.cell.2010.03.021. pmid:20403323
[60]  Orlando David A., Lin Charles Y., Bernard Allister, Wang Jean Y., Socolar Joshua E S., Iversen Edwin S., Hartemink Alexander J., and Haase Steven B.. Global control of cell-cycle transcription by coupled cdk and network oscillators. Nature, 453(7197):944–947, Jun 2008. doi: 10.1038/nature06955. pmid:18463633
[61]  Yang Qiong, Pando Bernardo F., Dong Guogang, Golden Susan S., and Oudenaarden Alexander van. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science, 327(5972):1522–1526, Mar 2010. doi: 10.1126/science.1181759. pmid:20299597
[62]  Feillet Céline, Krusche Peter, Tamanini Filippo, Janssens Roel C., Downey Mike J., Martin Patrick, Teboul Michèle, Saito Shoko, Lévi Francis A., Bretschneider Till, van der Horst Gijsbertus T J., Delaunay Franck, and Rand David A.. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A, 111(27):9828–9833, Jul 2014. doi: 10.1073/pnas.1320474111. pmid:24958884
[63]  Hong Christian I., Zámborszky Judit, Baek Mokryun, Labiscsak Laszlo, Ju Kyungsu, Lee Hyeyeong, Larrondo Luis F., Goity Alejandra, Chong Hin Siong, Belden William J., and Csikász-Nagy Attila. Circadian rhythms synchronize mitosis in neurospora crassa. Proc Natl Acad Sci U S A, 111(4):1397–1402, Jan 2014. doi: 10.1073/pnas.1319399111. pmid:24474764
[64]  Cross Frederick R and Siggia Eric D. Mode locking the cell cycle. Phys Rev E Stat Nonlin Soft Matter Phys, 72(2 Pt 1):021910, Aug 2005. doi: 10.1103/PhysRevE.72.021910. pmid:16196607
[65]  Battogtokh Dorjsuren and Tyson John J. Periodic forcing of a mathematical model of the eukaryotic cell cycle. Phys Rev E Stat Nonlin Soft Matter Phys, 73(1 Pt 1):011910, Jan 2006. doi: 10.1103/PhysRevE.73.011910. pmid:16486188
[66]  Ermentrout B.. Type i membranes, phase resetting curves, and synchrony. Neural Comput, 8(5):979–1001, Jul 1996. doi: 10.1162/neco.1996.8.5.979. pmid:8697231
[67]  Busti Stefano, Coccetti Paola, Alberghina Lilia, and Vanoni Marco. Glucose signaling-mediated coordination of cell growth and cell cycle in saccharomyces cerevisiae. Sensors (Basel), 10(6):6195–6240, 2010. doi: 10.3390/s100606195.
[68]  Schmidt-Glenewinkel Hannah and Barkai Naama. Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms. Mol Syst Biol, 10:769, 2014. doi: 10.15252/msb.20145513. pmid:25538138
[69]  Danaie P., Altmann M., Hall M. N., Trachsel H., and Helliwell S. B.. Cln3 expression is sufficient to restore g1-to-s-phase progression in saccharomyces cerevisiae mutants defective in translation initiation factor eif4e. Biochem J, 340 (Pt 1):135–141, May 1999. doi: 10.1042/bj3400135. pmid:10229668
[70]  Baumgartner Bridget L, Bennett Matthew R, Ferry Michael, Johnson Tracy L, Tsimring Lev S, and Hasty Jeff. Antagonistic gene transcripts regulate adaptation to new growth environments. Proc Natl Acad Sci U S A, 108(52):21087–21092, Dec 2011. doi: 10.1073/pnas.1111408109. pmid:22160690
[71]  Flick K., Chapman-Shimshoni D., Stuart D., Guaderrama M., and Wittenberg C.. Regulation of cell size by glucose is exerted via repression of the cln1 promoter. Mol Cell Biol, 18(5):2492–2501, May 1998. doi: 10.1128/MCB.18.5.2492. pmid:9566870
[72]  Santhanam Arti, Hartley Alan, Duvel Katrin, Broach James R., and Garrett Stephen. Pp2a phosphatase activity is required for stress and tor kinase regulation of yeast stress response factor msn2p. Eukaryot Cell, 3(5):1261–1271, Oct 2004. doi: 10.1128/EC.3.5.1261-1271.2004. pmid:15470255
[73]  Castermans Dries, Somers Ils, Kriel Johan, Louwet Wendy, Wera Stefaan, Versele Matthias, Janssens Veerle, and Thevelein Johan M.. Glucose-induced posttranslational activation of protein phosphatases pp2a and pp1 in yeast. Cell Res, 22(6):1058–1077, Jun 2012. doi: 10.1038/cr.2012.20. pmid:22290422
[74]  Queralt Ethel, Lehane Chris, Novak Bela, and Uhlmann Frank. Downregulation of pp2a(cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell, 125(4):719–732, May 2006. doi: 10.1016/j.cell.2006.03.038. pmid:16713564
[75]  Enders Greg H.. Gauchos and ochos: a wee1-cdk tango regulating mitotic entry. Cell Div, 5:12, 2010. doi: 10.1186/1747-1028-5-12
[76]  Porro Danilo, Brambilla Luca, and Alberghina Lilia. Glucose metabolism and cell size in continuous cultures of saccharomyces cerevisiae. FEMS Microbiol Lett, 229(2):165–171, Dec 2003. doi: 10.1016/S0378-1097(03)00815-2. pmid:14680694
[77]  Nakashima Akio, Maruki Yoshiko, Imamura Yuko, Kondo Chika, Kawamata Tomoko, Kawanishi Ippei, Takata Hideki, Matsuura Akira, Lee Kyung S., Kikkawa Ushio, Ohsumi Yoshinori, Yonezawa Kazuyoshi, and Kamada Yoshiaki. The yeast tor signaling pathway is involved in g2/m transition via polo-kinase. PLoS One, 3(5):e2223, 2008. doi: 10.1371/journal.pone.0002223. pmid:18493323
[78]  Messier Vincent, Zenklusen Daniel, and Michnick Stephen W.. A nutrient-responsive pathway that determines m phase timing through control of b-cyclin mrna stability. Cell, 153(5):1080–1093, May 2013. doi: 10.1016/j.cell.2013.04.035. pmid:23706744
[79]  Pfeuty Benjamin. Dynamical principles of cell-cycle arrest: reversible, irreversible, and mixed strategies. Phys Rev E Stat Nonlin Soft Matter Phys, 86(2 Pt 1):021917, Aug 2012. doi: 10.1103/PhysRevE.86.021917. pmid:23005795
[80]  Dnervaud Nicolas, Becker Johannes, Delgado-Gonzalo Ricard, Damay Pascal, Rajkumar Arun S., Unser Michael, Shore David, Naef Felix, and Maerkl Sebastian J.. A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci U S A, 110(39):15842–15847, Sep 2013. doi: 10.1073/pnas.1308265110.
[81]  Roukos Vassilis, Pegoraro Gianluca, Voss Ty C., and Misteli Tom. Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc, 10(2):334–348, Feb 2015. doi: 10.1038/nprot.2015.016. pmid:25633629
[82]  Sandler Oded, Mizrahi Sivan Pearl, Weiss Noga, Agam Oded, Simon Itamar, and Balaban Nathalie Q.. Lineage correlations of single cell division time as a probe of cell-cycle dynamics. Nature, 519(7544):468–471, Mar 2015. doi: 10.1038/nature14318. pmid:25762143
[83]  Crane Matthew M., Clark Ivan B N., Bakker Elco, Smith Stewart, and Swain Peter S.. A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One, 9(6):e100042, 2014. doi: 10.1371/journal.pone.0100042. pmid:24950344
[84]  Wang Yen-Hsiang, Wei Kathy Y., and Smolke Christina D.. Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng, 4:69–102, 2013. doi: 10.1146/annurev-chembioeng-061312-103351.
[85]  Tyson John J. and Novak Bela. Cell cycle: who turns the crank? Curr Biol, 21(5):R185–R187, Mar 2011. doi: 10.1016/j.cub.2011.01.042. pmid:21377093
[86]  Murray Seán M., Panis Ga?l, Fumeaux Coralie, Viollier Patrick H., and Howard Martin. Computational and genetic reduction of a cell cycle to its simplest, primordial components. PLoS Biol, 11(12):e1001749, Dec 2013. doi: 10.1371/journal.pbio.1001749. pmid:24415923
[87]  Gutenkunst Ryan N., Waterfall Joshua J., Casey Fergal P., Brown Kevin S., Myers Christopher R., and Sethna James P.. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol, 3(10):1871–1878, Oct 2007. doi: 10.1371/journal.pcbi.0030189. pmid:17922568
[88]  Oguz Cihan, Laomettachit Teeraphan, Chen Katherine C., Watson Layne T., Baumann William T., and Tyson John J.. Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model. BMC Syst Biol, 7:53, 2013. doi: 10.1186/1752-0509-7-53. pmid:23809412

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413