全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Long-Lasting Sparks: Multi-Metastability and Release Competition in the Calcium Release Unit Network

DOI: 10.1371/journal.pcbi.1004671

Full-Text   Cite this paper   Add to My Lib

Abstract:

Calcium (Ca) sparks are elementary events of biological Ca signaling. A normal Ca spark has a brief duration in the range of 10 to 100 ms, but long-lasting sparks with durations of several hundred milliseconds to seconds are also widely observed. Experiments have shown that the transition from normal to long-lasting sparks can occur when ryanodine receptor (RyR) open probability is either increased or decreased. Here, we demonstrate theoretically and computationally that long-lasting sparks emerge as a collective dynamical behavior of the network of diffusively coupled Ca release units (CRUs). We show that normal sparks occur when the CRU network is monostable and excitable, while long-lasting sparks occur when the network dynamics possesses multiple metastable attractors, each attractor corresponding to a different spatial firing pattern of sparks. We further highlight the mechanisms and conditions that produce long-lasting sparks, demonstrating the existence of an optimal range of RyR open probability favoring long-lasting sparks. We find that when CRU firings are sparse and sarcoplasmic reticulum (SR) Ca load is high, increasing RyR open probability promotes long-lasting sparks by potentiating Ca-induced Ca release (CICR). In contrast, when CICR is already strong enough to produce frequent firings, decreasing RyR open probability counter-intuitively promotes long-lasting sparks by decreasing spark frequency. The decrease in spark frequency promotes intra-SR Ca diffusion from neighboring non-firing CRUs to the firing CRUs, which helps to maintain the local SR Ca concentration of the firing CRUs above a critical level to sustain firing. In this setting, decreasing RyR open probability further suppresses long-lasting sparks by weakening CICR. Since a long-lasting spark terminates via the Kramers’ escape process over a potential barrier, its duration exhibits an exponential distribution determined by the barrier height and noise strength, which is modulated differently by different ways of altering the Ca release flux strength.

References

[1]  Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11–21. pmid:11413485 doi: 10.1038/35036035
[2]  Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395: 645–648. pmid:9790183 doi: 10.1038/27094
[3]  Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058. pmid:18083096 doi: 10.1016/j.cell.2007.11.028
[4]  Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled system of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ Res 106: 659–673. doi: 10.1161/CIRCRESAHA.109.206078. pmid:20203315
[5]  Qu Z, Hu G, Garfinkel A, Weiss JN (2014) Nonlinear and stochastic dynamics in the heart. Physics Reports 543: 61–162. pmid:25267872 doi: 10.1016/j.physrep.2014.05.002
[6]  Cheng H, Lederer WJ (2008) Calcium Sparks. Physiol Rev 88: 1491–1545. doi: 10.1152/physrev.00030.2007. pmid:18923188
[7]  Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol 6: e1000870. doi: 10.1371/journal.pcbi.1000870. pmid:20700497
[8]  Wang K, Rappel WJ, Levine H (2004) Cooperativity can reduce stochasticity in intracellular calcium dynamics. Phys Biol 1: 27–34. pmid:16204819 doi: 10.1088/1478-3967/1/1/003
[9]  Shuai JW, Jung P (2003) Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci U S A 100: 506–510. pmid:12518049 doi: 10.1073/pnas.0236032100
[10]  Falcke M (2003) On the role of stochastic channel behavior in intracellular Ca2+ dynamics. Biophys J 84: 42–56. pmid:12524264 doi: 10.1016/s0006-3495(03)74831-0
[11]  Nivala M, Ko CY, Nivala M, Weiss JN, Qu Z (2012) Criticality in intracellular calcium signaling in cardiac myocytes. Biophys J 102: 2433–2442. doi: 10.1016/j.bpj.2012.05.001. pmid:22713558
[12]  Chan Y-H, Tsai W-C, Song Z, Ko CY, Qu Z, et al. (2015) Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes. Journal of Molecular and Cellular Cardiology 80: 126–135. doi: 10.1016/j.yjmcc.2014.12.024. pmid:25596331
[13]  Shiferaw Y, Karma A (2006) Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proc Natl Acad Sci U S A 103: 5670–5675. pmid:16574775 doi: 10.1073/pnas.0511061103
[14]  Restrepo JG, Weiss JN, Karma A (2008) Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys J 95: 3767–3789. doi: 10.1529/biophysj.108.130419. pmid:18676655
[15]  Gaeta SA, Bub G, Abbott GW, Christini DJ (2009) Dynamical mechanism for subcellular alternans in cardiac myocytes. Circ Res 105: 335–342. doi: 10.1161/CIRCRESAHA.109.197590. pmid:19628792
[16]  Song Z, Ko C Y, Nivala M, Weiss James N, Qu Z (2015) Calcium-Voltage Coupling in the Genesis of Early and Delayed Afterdepolarizations in Cardiac Myocytes. Biophysical Journal 108: 1908–1921. doi: 10.1016/j.bpj.2015.03.011. pmid:25902431
[17]  Alvarez-Lacalle E, Echebarria B, Spalding J, Shiferaw Y (2015) Calcium alternans is due to an order-disorder phase transition in cardiac cells. Phys Rev Lett 114: 108101. pmid:25815968 doi: 10.1103/physrevlett.114.108101
[18]  Nivala M, Song Z, Weiss JN, Qu Z (2015) T-tubule disruption promotes calcium alternans in failing ventricular myocytes: Mechanistic insights from computational modeling. Journal of Molecular and Cellular Cardiology 79: 32–41. doi: 10.1016/j.yjmcc.2014.10.018. pmid:25450613
[19]  Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262: 740–744. pmid:8235594 doi: 10.1126/science.8235594
[20]  Xiao RP, Valdivia HH, Bogdanov K, Valdivia C, Lakatta EG, et al. (1997) The immunophilin FK506-binding protein modulates Ca2+ release channel closure in rat heart. The Journal of Physiology 500: 343–354. pmid:9147322 doi: 10.1113/jphysiol.1997.sp022025
[21]  Satoh H, Katoh H, Velez P, Fill M, Bers DM (1998) Bay K 8644 increases resting Ca2+ spark frequency in ferret ventricular myocytes independent of Ca influx: contrast with caffeine and ryanodine effects. Circ Res 83: 1192–1204. pmid:9851936 doi: 10.1161/01.res.83.12.1192
[22]  Shtifman A, Ward CW, Wang J, Valdivia HH, Schneider MF (2000) Effects of imperatoxin A on local sarcoplasmic reticulum Ca2+ release in frog skeletal muscle. Biophysical Journal 79: 814–827. pmid:10920014 doi: 10.1016/s0006-3495(00)76338-7
[23]  Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Brum G, et al. (2000) Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A 97: 4380–4385. pmid:10759554 doi: 10.1073/pnas.070056497
[24]  Hui CS, Besch HR Jr, Bidasee KR (2004) Effects of Ryanoids on Spontaneous and Depolarization-Evoked Calcium Release Events in Frog Muscle. Biophysical Journal 87: 243–255. pmid:15240461 doi: 10.1529/biophysj.103.031435
[25]  Gonzalez A, Kirsch WG, Shirokova N, Pizarro G, Stern MD, et al. (2000) The spark and its ember: separately gated local components of Ca(2+) release in skeletal muscle. J Gen Physiol 115: 139–158. pmid:10653893 doi: 10.1085/jgp.115.2.139
[26]  Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103: e105–115. doi: 10.1161/CIRCRESAHA.107.183236. pmid:18787194
[27]  Zima AV, Picht E, Bers DM, Blatter LA (2008) Partial inhibition of sarcoplasmic reticulum ca release evokes long-lasting ca release events in ventricular myocytes: role of luminal ca in termination of ca release. Biophys J 94: 1867–1879. pmid:18024505 doi: 10.1529/biophysj.107.114694
[28]  Yang Z, Steele DS (2005) Characteristics of Prolonged Ca2+ Release Events Associated With the Nuclei in Adult Cardiac Myocytes. Circulation Research 96: 82–90. pmid:15569829 doi: 10.1161/01.res.0000151841.63705.01
[29]  Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, et al. (2001) Coupled Gating Between Cardiac Calcium Release Channels (Ryanodine Receptors). Circulation Research 88: 1151–1158. pmid:11397781 doi: 10.1161/hh1101.091268
[30]  Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS (2002) Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83: 59–78. pmid:12080100 doi: 10.1016/s0006-3495(02)75149-7
[31]  Hinch R (2004) A Mathematical Analysis of the Generation and Termination of Calcium Sparks. Biophysical Journal 86: 1293–1307. pmid:14990462 doi: 10.1016/s0006-3495(04)74203-4
[32]  Stern MD, Rios E, Maltsev VA (2013) Life and death of a cardiac calcium spark. J Gen Physiol 142: 257–274. doi: 10.1085/jgp.201311034. pmid:23980195
[33]  Hilliard FA, Steele DS, Laver D, Yang Z, Le Marchand SJ, et al. (2010) Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol 48: 293–301. doi: 10.1016/j.yjmcc.2009.10.005. pmid:19835880
[34]  Gyorke S, Lukyanenko V, Gyorke I (1997) Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J Physiol 500 (Pt 2): 297–309. pmid:9147318 doi: 10.1113/jphysiol.1997.sp022021
[35]  Chandrasekhar S (1943) Stochastic Problems in Physics and Astronomy. Reviews of Modern Physics 15: 1–89. doi: 10.1103/revmodphys.15.1
[36]  Fox RF (1997) Stochastic versions of the Hodgkin-Huxley equations. Biophys J 72: 2068–2074. pmid:9129809 doi: 10.1016/s0006-3495(97)78850-7
[37]  Hinch R, Greenstein JL, Tanskanen AJ, Xu L, Winslow RL (2004) A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J 87: 3723–3736. pmid:15465866 doi: 10.1529/biophysj.104.049973
[38]  Nivala M, de Lange E, Rovetti R, Qu Z (2012) Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes. Front Physiol 3: 114. doi: 10.3389/fphys.2012.00114. pmid:22586402
[39]  Risken H (1989) The Fokker-Plank Equation; Haken H, editor. Berlin: Springer.
[40]  Gaur N, Rudy Y (2011) Multiscale modeling of calcium cycling in cardiac ventricular myocyte: macroscopic consequences of microscopic dyadic function. Biophys J 100: 2904–2912. doi: 10.1016/j.bpj.2011.05.031. pmid:21689523
[41]  Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, et al. (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A 106: 22275–22280. doi: 10.1073/pnas.0908971106. pmid:20018773
[42]  Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 539: 133–143. pmid:11850507 doi: 10.1113/jphysiol.2001.012940
[43]  Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63: 497–517. pmid:1330031 doi: 10.1016/s0006-3495(92)81615-6
[44]  Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35: 591–601. pmid:15110149 doi: 10.1016/j.ceca.2004.01.013
[45]  Winslow RL, Greenstein JL (2013) Extinguishing the sparks. Biophys J 104: 2115–2117. doi: 10.1016/j.bpj.2013.04.010. pmid:23708349
[46]  Sham JS, Song LS, Chen Y, Deng LH, Stern MD, et al. (1998) Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 95: 15096–15101. pmid:9844021 doi: 10.1073/pnas.95.25.15096
[47]  Sobie EA, Lederer WJ (2012) Dynamic local changes in sarcoplasmic reticulum calcium: physiological and pathophysiological roles. J Mol Cell Cardiol 52: 304–311. doi: 10.1016/j.yjmcc.2011.06.024. pmid:21767546
[48]  Gyorke I, Gyorke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75: 2801–2810. pmid:9826602 doi: 10.1016/s0006-3495(98)77723-9
[49]  Picht E, Zima AV, Shannon TR, Duncan AM, Blatter LA, et al. (2011) Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res 108: 847–856. doi: 10.1161/CIRCRESAHA.111.240234. pmid:21311044
[50]  Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104: 2149–2159. doi: 10.1016/j.bpj.2013.03.058. pmid:23708355
[51]  Walker M A, Williams G SB, Kohl T, Lehnart S E, Jafri MS, et al. (2014) Superresolution Modeling of Calcium Release in the Heart. Biophysical Journal 107: 3018–3029. doi: 10.1016/j.bpj.2014.11.003. pmid:25517166
[52]  Hake J, Edwards AG, Yu Z, Kekenes-Huskey PM, Michailova AP, et al. (2012) Modeling Cardiac Calcium Sparks in a Three-Dimensional Reconstruction of a Calcium Release Unit. J Physiol 590: 4403–4422. doi: 10.1113/jphysiol.2012.227926. pmid:22495592
[53]  Schendel T, Thul R, Sneyd J, Falcke M (2012) How does the ryanodine receptor in the ventricular myocyte wake up: by a single or by multiple open L-type Ca2+ channels? Eur Biophys J 41: 27–39. doi: 10.1007/s00249-011-0755-7. pmid:21964486
[54]  Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J 67: 447–456. pmid:7919018 doi: 10.1016/s0006-3495(94)80500-4
[55]  Restrepo JG, Karma A (2009) Spatiotemporal intracellular calcium dynamics during cardiac alternans. Chaos 19: 037115. doi: 10.1063/1.3207835. pmid:19792040
[56]  Lukyanenko V, Gyorke S (1999) Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol 521 Pt 3: 575–585. pmid:10601490 doi: 10.1111/j.1469-7793.1999.00575.x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133