全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Nav Channels

DOI: 10.1371/journal.pcbi.1004482

Full-Text   Cite this paper   Add to My Lib

Abstract:

Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.

References

[1]  Hille B. Ionic Channels of Excitable Membranes. 2 ed. Sunderland, MA: Sinauer Associates, Inc.; 1992 1992.
[2]  Ashcroft FM. Ion Channels and Disease. San Diego: Academic Press; 2000. 481 p.
[3]  Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium channel: molecular basis of K conduction and selectivity. Science. 1998;280:69–77. pmid:9525859 doi: 10.1126/science.280.5360.69
[4]  Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41. Epub 2003/05/02. doi: 10.1038/nature01580 pmid:12721618.
[5]  Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R. A gating charge transfer center in voltage sensors. Science. 2010;328(5974):67–73. Epub 2010/04/03. doi: 10.1126/science.1185954 pmid:20360102; PubMed Central PMCID: PMC2869078.
[6]  Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K channel-Fab complex at 2.0 A resolution. Nature. 2001;414:43–8. pmid:11689936
[7]  McCusker EC, Bagneris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, et al. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nature communications. 2012;3:1102. Epub 2012/10/04. doi: 10.1038/ncomms2077 pmid:23033078; PubMed Central PMCID: PMC3493636.
[8]  Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. 2012;486(7401):135–9. doi: 10.1038/nature11077 pmid:22678296; PubMed Central PMCID: PMC3552482.
[9]  Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475(7356):353–8. doi: 10.1038/nature10238 pmid:21743477; PubMed Central PMCID: PMC3266868.
[10]  Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 2012;486(7401):130–4. doi: 10.1038/nature11054 pmid:22678295; PubMed Central PMCID: PMC3979295.
[11]  Ulmschneider MB, Bagneris C, McCusker EC, Decaen PG, Delling M, Clapham DE, et al. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A. 2013;110(16):6364–9. doi: 10.1073/pnas.1214667110 pmid:23542377; PubMed Central PMCID: PMC3631666.
[12]  Furini S, Domene C. On conduction in a bacterial sodium channel. PLoS computational biology. 2012;8(4):e1002476. Epub 2012/04/13. doi: 10.1371/journal.pcbi.1002476 pmid:22496637; PubMed Central PMCID: PMC3320569.
[13]  Corry B. Na(+)/Ca(2+) selectivity in the bacterial voltage-gated sodium channel NavAb. PeerJ. 2013;1:e16. Epub 2013/05/03. doi: 10.7717/peerj.16 pmid:23638350; PubMed Central PMCID: PMC3629057.
[14]  Corry B, Thomas M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J Am Chem Soc. 2012;134(3):1840–6. doi: 10.1021/ja210020h pmid:22191670.
[15]  Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomes R. Catalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab. Proc Natl Acad Sci U S A. 2013;110(28):11331–6. doi: 10.1073/pnas.1309452110 pmid:23803856; PubMed Central PMCID: PMC3710854.
[16]  Boiteux C, Vorobyov I, Allen TW. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A. 2014;111(9):3454–9. doi: 10.1073/pnas.1320907111 pmid:24550503; PubMed Central PMCID: PMC3948317.
[17]  Finol-Urdaneta RK, Wang Y, Al-Sabi A, Zhao C, Noskov SY, French RJ. Sodium channel selectivity and conduction: prokaryotes have devised their own molecular strategy. J Gen Physiol. 2014;143(2):157–71. Epub 2014/01/15. doi: 10.1085/jgp.201311037 pmid:24420772.
[18]  Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comp Chem. 1992;13:1011–21. doi: 10.1002/jcc.540130812
[19]  Souaille M, Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun. 2001;135:40–57. doi: 10.1016/S0010-4655(00)00215-0.
[20]  Humphrey W, Dalke A, Schulten K. VMD- Visual Molecular Dynamics. J Molec Graphics. 1996;14:33–8. doi: 10.1016/0263-7855(96)00018-5
[21]  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. Journal of computational chemistry. 2005;26(16):1781–802. doi: 10.1002/jcc.20289 pmid:16222654; PubMed Central PMCID: PMC2486339.
[22]  MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. The journal of physical chemistry B. 1998;102(18):3586–616. doi: 10.1021/jp973084f pmid:24889800.
[23]  Mackerell AD Jr., Feig M, Brooks CL 3rd. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of computational chemistry. 2004;25(11):1400–15. doi: 10.1002/jcc.20065 pmid:15185334.
[24]  Noskov SY, Berneche S, Roux B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature. 2004;431(7010):830–4. Epub 2004/10/16. doi: 10.1038/nature02943 pmid:15483608.
[25]  Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The journal of physical chemistry B. 2010;114(23):7830–43. doi: 10.1021/jp101759q pmid:20496934; PubMed Central PMCID: PMC2922408.
[26]  Ngo V, Stefanovski D, Haas S, Farley RA. Non-equilibrium dynamics contribute to ion selectivity in the KcsA channel. PLoS One. 2014;9(1):e86079. Epub 2014/01/28. doi: 10.1371/journal.pone.0086079 pmid:24465882; PubMed Central PMCID: PMC3895005.
[27]  Ngo VA. Parallel-pulling protocol for free-energy evaluation. Physical review E, Statistical, nonlinear, and soft matter physics. 2012;85(3 Pt 2):036702. Epub 2012/05/17. pmid:22587204. doi: 10.1103/physreve.85.036702
[28]  Ngo VA, De Felice R, Haas S. Is the G-Quadruplex an Effective Nanoconductor for Ions? J Phys Chem B. 2014;118:864–72. doi: 10.1021/jp408071h. pmid:24397412
[29]  Hille B. Ionic selectivity, saturation, and block in sodium channels. A four barrier model. JgenPhysiol. 1975;66:535–60. doi: 10.1085/jgp.66.5.535
[30]  Stock L, Delemotte L, Carnevale V, Treptow W, Klein ML. Conduction in a biological sodium selective channel. The journal of physical chemistry B. 2013;117(14):3782–9. doi: 10.1021/jp401403b pmid:23452067.
[31]  Ke S, Timin EN, Stary-Weinzinger A. Different inward and outward conduction mechanisms in NaVMs suggested by molecular dynamics simulations. PLoS computational biology. 2014;10(7):e1003746. doi: 10.1371/journal.pcbi.1003746 pmid:25079564; PubMed Central PMCID: PMC4117422.
[32]  Kopfer DA, Song C, Gruene T, Sheldrick GM, Zachariae U, de Groot BL. Ion permeation in K(+) channels occurs by direct Coulomb knock-on. Science. 2014;346(6207):352–5. doi: 10.1126/science.1254840 pmid:25324389.
[33]  Park S, Schulten K. Calculating potentials of mean force from steered molecular dynamics simulations. The Journal of chemical physics. 2004;120(13):5946–61. doi: 10.1063/1.1651473 pmid:15267476.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413