全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

DOI: 10.1371/journal.pcbi.1004702

Full-Text   Cite this paper   Add to My Lib

Abstract:

What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

References

[1]  Brown T. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol. 1914; 48:18–46. pmid:16993247 doi: 10.1113/jphysiol.1914.sp001646
[2]  Nakamura Y, Nobuo K. Generation of masticatory rhythm in the brainstem. Neurosci Res. 1995; 23:1–19. pmid:7501294 doi: 10.1016/0168-0102(95)90003-9
[3]  Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Ann Rev Neuro. 2003; 26:239–66. doi: 10.1146/annurev.neuro.26.041002.131103
[4]  Kristan WB, Calabrese RL, Friesen WO. Neuronal control of leech behavior. Prog Neurobiol. 2005; 76:279–327. pmid:16260077 doi: 10.1016/j.pneurobio.2005.09.004
[5]  Goulding M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neuro. 2009; 10:507–518. doi: 10.1038/nrn2608
[6]  Selverston A I. Invertebrate central pattern generator circuits. Phil Trans R Soc B. 2010; 365:2329–2345. doi: 10.1098/rstb.2009.0270. pmid:20603355
[7]  Wilson D, Waldron I. Models for the generation of the motor output pattern in flying locusts. Proc IEEE. 1968; 169:1058–1064. doi: 10.1109/proc.1968.6457
[8]  Ijspeert A. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern. 2001; 84:331–48. pmid:11357547 doi: 10.1007/s004220000211
[9]  Getting PA. Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J Neurophysiol. 1983; 49:1017–1035. pmid:6854355
[10]  Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN. Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol. 2007; 98:2382–2398. pmid:17652417 doi: 10.1152/jn.00572.2007
[11]  Taylor A, Cottrell G, Kristan WB. A model of the leech segmental swim central pattern generator. Neurocomputing. 2000; 33:573–584. doi: 10.1016/s0925-2312(00)00214-9
[12]  Ekeberg O, Lansner A, Grillner S. The Neural Control of Fish Swimming Studied Through Numerical Simulations. Adaptive Behavior. 1995; 3:363–384. doi: 10.1177/105971239500300402
[13]  Sautois B, Soffe SR, Roberts A. Role of type-specific neuron properties in a spinal cord motor network. J Comp Neuro. 2007; 23:59–77. doi: 10.1007/s10827-006-0019-1
[14]  Li W-C, Perrins R, Soffe S, Yoshida M, Walford A, Roberts A. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles. J Comp Neurol. 2001; 441:248–265. pmid:11745648 doi: 10.1002/cne.1410
[15]  Roberts A, Li W-C, Soffe S. How neurons generate behavior in a hatchling amphibian tadpole: an outline. Front Behav Neurosci. 2010; 4:1–11. doi: 10.3389/fnbeh.2010.00016
[16]  Kahn J, Roberts A, Kashin S. The neuromuscular basis of swimming movements in embryos of the amphibian Xenopus laevis. J Exp Biol. 1982; 99:175–184. pmid:7130896
[17]  Li W-C, Soffe SR, Wolf E, Roberts A. Persistent responses to brief stimuli: feedback excitation among brainstem neurons. J Neurosci. 2006; 26:4026–4035. pmid:16611819 doi: 10.1523/jneurosci.4727-05.2006
[18]  Soffe S, Roberts A, Li W-C. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. J Physiol. 2009; 587:4829–4844. doi: 10.1113/jphysiol.2009.175208. pmid:19703959
[19]  Li W-C, Roberts A, Soffe SR. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors. J Neurosci. 2010; 30:16609–16620. doi: 10.1523/JNEUROSCI.3695-10.2010. pmid:21148000
[20]  Soffe SR. Roles of glycinergic inhibition and N-methyl-D-aspartate receptor mediated excitation in the locomotor rhythmicity of one half of the Xenopus embryo central nervous system. Euro J Neurosci. 1989; 1:561–571. doi: 10.1111/j.1460-9568.1989.tb00363.x
[21]  Hull MJ, Soffe SR, Willshaw DJ, Roberts A. Modelling the effects of electrical coupling between unmyelinated axons of brainstem neurons controlling rhythmic activity. PLoS Comp Biol. May 8, 2015. doi: 10.1371/journal.pcbi.1004240.
[22]  Li W-C, Roberts A, Soffe SR. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. J Physiol. 2009; 587:1677–1693. doi: 10.1113/jphysiol.2008.166942. pmid:19221124
[23]  Major G, Tank D. Persistent neural activity: prevalence and mechanisms. Curr Opin Neurobiol. 2004; 14:675–684. pmid:15582368 doi: 10.1016/j.conb.2004.10.017
[24]  Hull MJ. Willshaw DJ. morphforge: a toolbox for simulating small networks of biologically detailed neurons in Python. Front Neuroinform. 2014; 7, 47. doi: 10.3389/fninf.2013.00047. pmid:24478690
[25]  Wolf E Zhao F Y Roberts A. Non-linear summation of excitatory synaptic inputs to small neurones: a case study in spinal motoneurones of the young Xenopus tadpole. J Physiol. 1998; 511:871–86. pmid:9714867 doi: 10.1111/j.1469-7793.1998.871bg.x
[26]  Hille B. Ion channels of excitable membranes. 2001. Sinauer Associates, Sunderland.
[27]  Koch C. Biophysics of Computation: Information Processing in Single Neurons. 1999. Oxford University Press, New York.
[28]  Dale N. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo. J Physiol. 1995; 489:489–510. pmid:8847642 doi: 10.1113/jphysiol.1995.sp021067
[29]  Perrins R, Walford A & Roberts A. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles. J Neurosci. 2002; 22:4229–40. pmid:12019340
[30]  Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117:500–544. pmid:12991237 doi: 10.1113/jphysiol.1952.sp004764
[31]  Buhl E, Roberts A, Soffe SR. The role of a trigeminal sensory nucleus in the initiation of locomotion. J Physiol. 2012; 590:2453–2469. doi: 10.1113/jphysiol.2012.227934. pmid:22393253
[32]  Carnevale NT Hines ML. The NEURON Book. 2006;Cambridge University Press, Cambridge.
[33]  Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984; 307:462–465. pmid:6320006 doi: 10.1038/307462a0
[34]  Li W-C and Moult PR. The Control of Locomotor Frequency by Excitation and Inhibition. J Neurosci. 2012; 32(18):6220–6230. doi: 10.1523/JNEUROSCI.6289-11.2012. pmid:22553028
[35]  Dale N, Roberts A. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. J Physiol. 1985; 363:35–59. pmid:2862278 doi: 10.1113/jphysiol.1985.sp015694
[36]  Boothby KM, Roberts A. The stopping response of Xenopus laevis embryos: behaviour, development and physiology. J Comp Physiol. 1992; 170:171–180. doi: 10.1007/bf00196899
[37]  Di Prisco GV, Pearlstein E, Robitaille R, Dubuc R. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science. 1997; 278:1122–1125. pmid:9353193 doi: 10.1126/science.278.5340.1122
[38]  Pace RW, Mackay DD, Feldman JL, Del Negro CA. Role of persistent sodium current in mouse pre-Botzinger Complex neurons and respiratory rhythm generation. J Physiol. 2007; 580:485–496. pmid:17272351 doi: 10.1113/jphysiol.2006.124602
[39]  Tazerart S, Vinay L, Brocard F. The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci. 2008; 28:8577–8589. doi: 10.1523/JNEUROSCI.1437-08.2008. pmid:18716217
[40]  Zhong G, Masino MA, Harris-Warrick RM. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci. 2007; 27:4507–4518. pmid:17460064 doi: 10.1523/jneurosci.0124-07.2007
[41]  Smetana R Juvin L Dubuc R Alford S. A parallel cholinergic brainstem pathway for enhancing locomotor drive. Nat Neurosci. 2010; 13(6):731–8. doi: 10.1038/nn.2548. pmid:20473293
[42]  Winlove CIP, Roberts A. Pharmacology of currents underlying the different firing patterns of spinal sensory neurons and interneurons identified in vivo using multivariate analysis. J Neurophysiol. 2011; 105:2487–2500. doi: 10.1152/jn.00779.2010. pmid:21346204
[43]  Aiken SP, Kuenzi FM, Dale N. Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes—conditional oscillators after all? Eur J Neurosci. 2003; 18:333–343. pmid:12887415 doi: 10.1046/j.1460-9568.2003.02755.x
[44]  Perkel D, Mulloney B. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science. 1974; 185:181–183. pmid:4834220 doi: 10.1126/science.185.4146.181
[45]  Satterlie R. Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science. 1985; 229:402–404. pmid:17795901 doi: 10.1126/science.229.4711.402
[46]  Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol Rev. 1996; 76:687–717. pmid:8757786
[47]  Calabrese R. Feldman J Intrinsic membrane properties and synaptic mechanisms in motor rhythm generators. 1997; 119–130 in, Neurons, Networks and Motor Behaviour. MIT Press, Cambridge.
[48]  Grillner S. Bridging the gap-from ion channels to networks and behaviour. Curr Opin Neurobiol. 1999; 9:663–669. pmid:10607645 doi: 10.1016/s0959-4388(99)00036-7
[49]  Arbas E, Calabrese RL. Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech. J Neurosci. 1987; 7:3945–3952. pmid:3694258
[50]  Angstadt JD, Grassmann JL, Theriault KM, Levasseur SM. Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech. J Comp Physiol. 2005; 191:715–32. doi: 10.1007/s00359-005-0628-6
[51]  Arshavsky YI. Cellular and network properties in the functioning of the nervous system: from central pattern generators to cognition. Brain Res Rev. 2003; 41:229–267. pmid:12663082 doi: 10.1016/s0165-0173(02)00249-7
[52]  Bertrand S. Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro. J Neurophysiol. 1998; 79:342–351. pmid:9425203
[53]  Dale N. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity. J Comp Neuro. 2003; 14(1):55–70.
[54]  Roberts A, Tunstall MJ. Mutual re-excitation with post-inhibitory rebound: a simulation study on the mechanisms for locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur J Neurosci. 1990; 2:11–23. pmid:12106099 doi: 10.1111/j.1460-9568.1990.tb00377.x
[55]  Tunstall MJ, Roberts A, Soffe SR. Modelling inter-segmental coordination of neuronal oscillators: synaptic mechanisms for uni-directional coupling during swimming in Xenopus tadpoles. J Comp Neuro. 2002; 13:143–58.
[56]  Moult P R, Cottrell G A, Li W-C. Fast silencing reveals a lost role for reciprocal inhibition in locomotion. Neuron. 2013; 77(1):129–40. doi: 10.1016/j.neuron.2012.10.040. pmid:23312521
[57]  Tabak J, Moore LE. Simulation and parameter estimation study of a simple neuronal model of rhythm generation: role of NMDA and non-NMDA receptors. J Comp Neuro. 1998; 5:209–35.
[58]  Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Ann Rev Neuro. 1985; 8(1):233–261. doi: 10.1146/annurev.ne.08.030185.001313
[59]  Li W-C. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms. J Neurosci. 2015; 35(27):9799–9810. doi: 10.1523/JNEUROSCI.0323-15.2015. pmid:26156983
[60]  Garcia AJ, Zanella S, Koch H, Doi A, Ramirez JM. Networks within networks: the neuronal control of breathing. Prog Brain Res. 2011; 188:31–50. doi: 10.1016/B978-0-444-53825-3.00008-5. pmid:21333801
[61]  Aksay E, Olasagasti I, Mensh BD, Baker R, Goldman MS, Tank DW. Functional dissection of circuitry in a neural integrator. Nat Neuro. 2007; 10:494–504. doi: 10.1038/nn1877
[62]  Winlove CIP, Roberts A. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents. Eur J Neurosci. 2012; 36:2926–2940. doi: 10.1111/j.1460-9568.2012.08208.x. pmid:22775205
[63]  Connor J, Stevens C. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971; 213:31–53. pmid:5575343 doi: 10.1113/jphysiol.1971.sp009366
[64]  West J, Hoesen G, Kosel K. A demonstration of hippocampal mossy fiber axon morphology using the anterograde transport of horseradish peroxidase. Exp Brain Res. 1982; 48:209–216. pmid:7173358 doi: 10.1007/bf00237216
[65]  Faisal AA, Laughlin SB. Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Comput Biol. 2007; 3:783–795. doi: 10.1371/journal.pcbi.0030079
[66]  Kress GJ, Dowling MJ, Meeks JP, Mennerick S. High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers. J Neurophysiol. 2008; 100:281–91. doi: 10.1152/jn.90295.2008. pmid:18480368
[67]  Baginskas A, Palani D, Chiu K, Raastad M. The H-current secures action potential transmission at high frequencies in rat cerebellar parallel fibers. Eur J Neurosci. 2009; 29:87–96. doi: 10.1111/j.1460-9568.2008.06566.x. pmid:19087162
[68]  Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P. Why do axons differ in caliber? J Neurosci. 2012; 32:626–38. doi: 10.1523/JNEUROSCI.4254-11.2012. pmid:22238098

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413