全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae

DOI: 10.1371/journal.pcbi.1004703

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model—confronted with experimental data—reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

References

[1]  Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161–1208. pmid:15892631 doi: 10.2174/0929867053764635
[2]  Waldron K, Rutherford J, Ford D, Robinson N (2009) Metalloproteins and metal sensing. Nature 460: 823–830. doi: 10.1038/nature08300. pmid:19675642
[3]  Hosiner D, Gerber S, Lichtenberg-Frate H, Glaser W, Schuller C, et al. (2014) Impact of Acute Metal Stress in Saccharomyces cerevisiae. PLoS One 9: e83330. doi: 10.1371/journal.pone.0083330. pmid:24416162
[4]  Eide DJ (2001) Functional genomics and metal metabolism. Genome Biology 2: 1028.1021–1028.1023.
[5]  Sychrova H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53: 91–98.
[6]  Ari?o J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74: 95–120. doi: 10.1128/MMBR.00042-09. pmid:20197501
[7]  Cyert MS, Philpott CC (2013) Regulation of cation balance in Saccharomyces cerevisiae. Genetics 193: 677–713. doi: 10.1534/genetics.112.147207. pmid:23463800
[8]  Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, et al. (2012) Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 8: e1002548. doi: 10.1371/journal.pcbi.1002548. pmid:22737060
[9]  Arino J, Aydar E, Drulhe S, Ganser D, Jorrin J, et al. (2014) Systems biology of monovalent cation homeostasis in yeast: the translucent contribution. Adv Microb Physiol 64: 1–63. doi: 10.1016/B978-0-12-800143-1.00001-4. pmid:24797924
[10]  Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer's disease brain. Neurotoxicology 19: 339–345. pmid:9621340
[11]  Blackwell KJ, Tobin JM, Avery SV (1998) Manganese toxicity towards Saccharomyces cerevisiae: dependence on intracellular and extracellular magnesium concentrations. Appl Microbiol Biotechnol 49: 751–757. pmid:9684308 doi: 10.1007/s002530051242
[12]  Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469: 1–30. pmid:10692635 doi: 10.1016/s0304-4157(99)00013-1
[13]  Jennings D (1995) The physiology of fungal nutrition: Cambridge University Press.
[14]  Rothstein A (1964) The cellular functions of membrane transport. Prentice-Hall, Englewood Cliffs, N. pp. 23–39.
[15]  Tosteson DC (1964) Regulation of cell volume by sodium and potassium transport. Prentice-Hall, Englewood Cliffs, N. pp. 3–22.
[16]  Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13: 399–404. pmid:11454443 doi: 10.1016/s0955-0674(00)00227-1
[17]  Gasch A, Spellman P (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Cell Biol 11: 4241–4257. doi: 10.1091/mbc.11.12.4241
[18]  Cronin J (1981) Mathematics of Cell Electrophysiology—Lecture Notes in pure and applied mathematics -volume 63: Marcel Dekker.
[19]  Keener J, Sneyd J (1998) Mathematical Physiology: Springer.
[20]  Dinno A (1988) Membrane Biophysics: Biological Transport (Progress in Clinical & Biological Research): A.R.Liss,N.Y.
[21]  Stein WD (1990) Channels, Carriers, and Pumps: An Introduction to Membrane Transport: Academic Press.
[22]  Stein WD (1986) Transport and Diffusion Across Cell Membranes: Academic Press.
[23]  Gradmann D, Klieber HG, Hansen UP (1987) Reaction kinetic parameters for ion transport from steady-state current-voltage curves. Biophys J 51: 569–585. pmid:2437973 doi: 10.1016/s0006-3495(87)83382-9
[24]  Garcia GJ, Boucher RC, Elston TC (2013) Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities. Biophys J 104: 716–726. doi: 10.1016/j.bpj.2012.12.040. pmid:23442922
[25]  Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, et al. (2012) Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol 160: 1956–1967. doi: 10.1104/pp.112.207704. pmid:23090586
[26]  Gradmann D (2001) Impact of apoplast volume on ionic relations in plant cells. J Membr Biol 184: 61–69. pmid:11687879 doi: 10.1007/s00232-001-0074-5
[27]  Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136: 327–332. pmid:8114082 doi: 10.1007/bf00233671
[28]  Gradmann D, Hoffstadt J (1998) Electrocoupling of ion transporters in plants: interaction with internal ion concentrations. J Membr Biol 166: 51–59. pmid:9784585 doi: 10.1007/s002329900446
[29]  Katzir-Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Cambridge,: Harvard University Press. x, 248 p. p.
[30]  Katchalsky A, Spangler R (1968) Dynamics of membrane processes. Q Rev Biophys 1: 127–175. pmid:4884849 doi: 10.1017/s0033583500000524
[31]  Onsager L (1931) Reciprocal Relations in Irreversible Processes I. Phys Rev 37: 405–426. doi: 10.1103/physrev.37.405
[32]  Onsager L (1931) Reciprocal Relations in Irreversible Processes II. Phys Rev 38: 2265–2279. doi: 10.1103/physrev.38.2265
[33]  Blatt M, CL. S (1987) Role of "active" potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proc Natl Acad Sci U S A 84: 2737–2741. pmid:3472234 doi: 10.1073/pnas.84.9.2737
[34]  Katchalsky A, Curran P (1965) Nonequilibrium Thermodynamics in Biophysics: Harvard Univ. Press.
[35]  Lecchi S, Allen KE, Pardo JP, Mason AB, Slayman CW (2005) Conformational changes of yeast plasma membrane H(+)-ATPase during activation by glucose: role of threonine-912 in the carboxy-terminal tail. Biochemistry Easton 44: 16624–16632. doi: 10.1021/bi051555f
[36]  Lecchi S, Nelson CJ, Slayman CW (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282: 35471. pmid:17932035 doi: 10.1074/jbc.m706094200
[37]  Keener J, Sneyd J (1998) Mathematical Physiology; Marsden JE, Sirovich L, Wiggins S, editors. New York: Springer.
[38]  Rapoport SI (1970) The sodium-potassium exchange pump: relation of metabolism to electrical properties of the cell. I. Theory. Biophys J 10: 246–259. pmid:5434647 doi: 10.1016/s0006-3495(70)86297-x
[39]  Waldeck AR, van Dam K, Berden J, Kuchel PW (1998) A non-equilibrium thermodynamics model of reconstituted Ca(2+)-ATPase. Eur Biophys J 27: 255–262. pmid:9615397 doi: 10.1007/s002490050132
[40]  Hill TL (1983) Derivation of the relation between the linear Onsager coefficients and the equilibrium one-way cycle fluxes of a biochemical kinetic diagram. Proc Natl Acad Sci U S A 80: 2589–2590. pmid:16593306 doi: 10.1073/pnas.80.9.2589
[41]  Rivetta A, Slayman C, Kuroda T (2005) Quantitative Modeling of Chloride Conductance in Yeast TRK Potassium Transporters. Biophysical Journal 89: 2412–2426. pmid:16040756 doi: 10.1529/biophysj.105.066712
[42]  Goodman J, Rothstein A (1957) The Active Transport of Phosphate into the Yeast Cell. Journal of General Physiology 40: 915–923. pmid:13439168 doi: 10.1085/jgp.40.6.915
[43]  Canadell D, Gonzalez A, Casado C, Arino J (2015) Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Molecular Microbiology 95: 555–572. doi: 10.1111/mmi.12886. pmid:25425491
[44]  Serra-Cardona A, Petrezselyova S, Canadell D, Ramos J, Arino J (2014) Coregulated Expression of the Na+/Phosphate Pho89 Transporter and Ena1 Na+-ATPase Allows Their Functional Coupling under High-pH Stress. Molecular and Cellular Biology 34: 4420–4435. doi: 10.1128/MCB.01089-14. pmid:25266663
[45]  Rapoport SI (1970) The sodium-potassium exchange pump: relation of metabolism to electrical properties of the cell. Biophysical Journal 10: 246–259. pmid:5434647 doi: 10.1016/s0006-3495(70)86297-x
[46]  Waldeck ARvD, K.; Berden J.; Kuchel P. W. (1998) A non-equilibrium thermodynamics model of reconstituted Ca(2+)-ATPase. European biophysics journal: EBJ 27: 255–262. pmid:9615397 doi: 10.1007/s002490050132
[47]  Cagnac O, Leterrier M, Yeager M, Blumwald E (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282: 24284–24293. pmid:17588950 doi: 10.1074/jbc.m703116200
[48]  Qiu QS, Fratti RA (2010) The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 123: 3266–3275. doi: 10.1242/jcs.067637. pmid:20826459
[49]  Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55: 588–600. pmid:15659172 doi: 10.1111/j.1365-2958.2004.04410.x
[50]  Jakobsson E (1980) Interactions of cell volume, membrane potential and membrane transport parameters. Am J Physiol 238: C196–C206. pmid:7377338
[51]  Lemieux DR, Roberge FA, Joly D (1992) Modeling the dynamic features of the electrogenic Na,K pump of cardiac cells. Journal of Theoretical Biology 154: 335–358. pmid:1317487 doi: 10.1016/s0022-5193(05)80175-4
[52]  Strieter J, Stephenson J, Palmer L, Weinstein A (1990) Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium. J Gen Physiol 96: 319–344. pmid:2212984 doi: 10.1085/jgp.96.2.319
[53]  Hernandez J, Cristina E (1998) Modeling cell volume regulation in nonexcitable cells: the roles of the Na+ pump and of cotransport systems. Am J Physiol Cell Physiol 275: 1067–1080.
[54]  Tosteson DC, Hoffman JF (1960) Regulation of Cell Volume by Active Cation Transport in High and Low Potassium Sheep Red Cells. J Gen Physiol 44: 169–194. pmid:13777653 doi: 10.1085/jgp.44.1.169
[55]  Rep M, Reiser V, Gartner U, Thevelein J, Hohmann S, et al. (1999) Osmotic Stress-Induced Gene Expression in Saccharomyces cerevisiae Requires Msn1p and the Novel Nuclear Factor Hot1. Molecular and Cellular Biology 19: 5474–5548. pmid:10409737 doi: 10.1128/mcb.19.8.5474
[56]  Van Wuytswinkel O, Reiser V, Siderius M, Kelders M, Ammerer G, et al. (2000) Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol Microbiol 37: 382–397. pmid:10931333 doi: 10.1046/j.1365-2958.2000.02002.x
[57]  Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock. Journal of Biological Chemistry 275: 8290–8300. pmid:10722658 doi: 10.1074/jbc.275.12.8290
[58]  Schaber J, Baltanas R, Bush A, Klipp E, Colman-Lerner A (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8: 622. doi: 10.1038/msb.2012.53. pmid:23149687
[59]  Klipp E, Nordlander B, Kr?ger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23: 975–982. pmid:16025103 doi: 10.1038/nbt1114
[60]  Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5: e9522. doi: 10.1371/journal.pone.0009522. pmid:20209100
[61]  Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, et al. (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 11: 1547–1556. doi: 10.1007/s00249-010-0612-0
[62]  Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30: 472–486. pmid:16594966 doi: 10.1111/j.1574-6976.2006.00019.x
[63]  Shabala L, Bowman J, Brown J, Ross T, McMeekin T, et al. (2009) Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 11: 137–148. doi: 10.1111/j.1462-2920.2008.01748.x. pmid:18793315
[64]  Sherman F (2002) Getting started with yeast. Methods Enzymol 350: 3–41. pmid:12073320 doi: 10.1016/s0076-6879(02)50954-x
[65]  ?zalp V, Pedersen T, Nielsen L, Olsen L (2010) Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem 26: 37579–37588. doi: 10.1074/jbc.m110.155119
[66]  Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 83: 3067–3074. doi: 10.1093/bioinformatics/btl485
[67]  Kennedy J, Eberhart R. Particle swarm optimization; 1995. pp. 1942–1948. doi: 10.1109/icnn.1995.488968
[68]  Matsumoto M, Nishimura T (1998) Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation 8: 3–30. doi: 10.1145/272991.272995
[69]  Petzold L (1983) Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing 4: 136–148. doi: 10.1137/0904010

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413