全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression

DOI: 10.1371/journal.pcbi.1004664

Full-Text   Cite this paper   Add to My Lib

Abstract:

The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins–glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)–regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.

References

[1]  Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511(7509):348–52. doi: 10.1038/nature13294 pmid:MEDLINE:24896183.
[2]  Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron. 2006;52(5):817–30. doi: 10.1016/j.neuron.2006.09.040 pmid:WOS:000242856400010.
[3]  Petrini EM, Lu JY, Cognet L, Lounis B, Ehlers MD, Choquet D. Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation. Neuron. 2009;63(1):92–105. doi: 10.1016/j.neuron.2009.05.025 pmid:WOS:000268189900011.
[4]  Park M, Penick EC, Edwards JG, Kauer JA, Ehlers MD. Recycling endosomes supply AMPA receptors for LTP. Science. 2004;305(5692):1972–5. doi: 10.1126/science.1102026 pmid:WOS:000224136000052.
[5]  Takamiya K, Mao LF, Huganir RL, Linden DJ. The glutamate receptor-interacting protein family of GluR2-binding proteins is required for long-term synaptic depression expression in cerebellar Purkinje cells. Journal of Neuroscience. 2008;28(22):5752–5. doi: 10.1523/jneurosci.0654-08.2008 pmid:WOS:000256238800015.
[6]  Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron. 2000;28(2):499–510. doi: 10.1016/s0896-6273(00)00128-8 pmid:WOS:000165493700024.
[7]  Napper RMA, Harvey RJ. Number of parallel fiber synapses on an individual Purkinje-cell in the cerebellum of the rat. Journal of Comparative Neurology. 1988;274(2):168–77. doi: 10.1002/cne.902740204 pmid:WOS:A1988P574500003.
[8]  Choquet D, Triller A. The Dynamic Synapse. Neuron. 2013;80(3):691–703. doi: 10.1016/j.neuron.2013.10.013 pmid:WOS:000326609900014.
[9]  Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 2000;25(3):635–47. doi: 10.1016/s0896-6273(00)81066-1 pmid:WOS:000086291700016.
[10]  Anggono V, Koc-Schmitz Y, Widagdo J, Kormann J, Quan A, Chen CM, et al. PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(34):13976–81. doi: 10.1073/pnas.1312467110 pmid:WOS:000323271400068.
[11]  Huganir RL, Nicoll RA. AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron. 2013;80(3):704–17. doi: 10.1016/j.neuron.2013.10.025 pmid:WOS:000326609900015.
[12]  Czondor K, Mondin M, Garcia M, Heine M, Frischknecht R, Choquet D, et al. Unified quantitative model of AMPA receptor trafficking at synapses. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(9):3522–7. doi: 10.1073/pnas.1109818109 pmid:WOS:000300828200066.
[13]  Shepherd JD, Huganirl RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology. Annual Review of Cell and Developmental Biology. 23. Palo Alto: Annual Reviews; 2007. p. 613–43. pmid:17506699
[14]  Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 2000;28(2):511–25. doi: 10.1016/s0896-6273(00)00129-x pmid:WOS:000165493700025.
[15]  Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science. 2008;319(5866):1104–7. doi: 10.1126/science.1149967 pmid:WOS:000253311700047.
[16]  Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neuroscience. 2000;3(12):1291–300. pmid:WOS:000167177900015.
[17]  Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science. 1991;254(5038):1656–9. doi: 10.1126/science.1721243 pmid:WOS:A1991GV07300049.
[18]  Finch EA, Tanaka K, Augustine GJ. Calcium as a Trigger for Cerebellar Long-Term Synaptic Depression. Cerebellum. 2012;11(3):706–17. doi: 10.1007/s12311-011-0314-x pmid:WOS:000307291500010.
[19]  Evans GJO. Synaptic signalling in cerebellar plasticity. Biology of the Cell. 2007;99(7):363–78. doi: 10.1042/bc20070010 pmid:WOS:000248316100002.
[20]  Ito M. The molecular organization of cerebellar long-term depression. Nature Reviews Neuroscience. 2002;3(11):896–902. doi: 10.1038/nrn962 pmid:WOS:000179041700020.
[21]  Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron. 2000;28(3):873–86. doi: 10.1016/s0896-6273(00)00160-4 pmid:WOS:000166057500023.
[22]  Dong HL, Zhang PS, Song IS, Petralia RS, Liao DZ, Huganir RL. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. Journal of Neuroscience. 1999;19(16):6930–41. pmid:WOS:000081900800022.
[23]  Braithwaite SP, Xia HH, Malenka RC. Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(10):7096–101. doi: 10.1073/pnas.102156099 pmid:WOS:000175637300103.
[24]  Trotman M, Barad Z, Guevremont D, Williams J, Leitch B. Changes in the GRIP 1&2 scaffolding proteins in the cerebellum of the ataxic stargazer mouse. Brain Research. 2014;1546:53–62. doi: 10.1016/j.brainres.2013.12.027 pmid:WOS:000331782100007.
[25]  Osten P, Khatri L, Perez JL, Kohr G, Giese G, Daly C, et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron. 2000;27(2):313–25. doi: 10.1016/s0896-6273(00)00039-8 pmid:WOS:000088956000015.
[26]  Hanley JG, Henley JM. PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. Embo Journal. 2005;24(18):3266–78. doi: 10.1038/sj.emboj.7600801 pmid:WOS:000232551600011.
[27]  Seidenman KJ, Steinberg JP, Huganir R, Malinow R. Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. Journal of Neuroscience. 2003;23(27):9220–8. pmid:WOS:000185822200023.
[28]  Hanley JG. PICK1: A multi-talented modulator of AMPA receptor trafficking. Pharmacology & Therapeutics. 2008;118(1):152–60. doi: 10.1016/j.pharmthera.2008.02.002 pmid:WOS:000256240900009.
[29]  Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S, et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron. 2006;49(6):845–60. doi: 10.1016/j.neuron.2006.02.025 pmid:WOS:000236227500013.
[30]  Tang QP, Tan LH, Yang XS, Shen Q, Huang XS, Wang GQ, et al. Willed-movement training reduces motor deficits and induces a PICK1-dependent LTD in rats subjected to focal cerebral ischemia. Behavioural Brain Research. 2013;256:481–7. doi: 10.1016/j.bbr.2013.08.039 pmid:WOS:000328094100059.
[31]  Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB. PICK1 targets activated protein kinase C alpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. Journal of Neuroscience. 2001;21(15):5417–28. pmid:WOS:000170108900007.
[32]  Matsuda S, Mikawa S, Hirai H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. Journal of Neurochemistry. 1999;73(4):1765–8. doi: 10.1046/j.1471-4159.1999.731765.x pmid:WOS:000082616200051.
[33]  Lu W, Ziff EB. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron. 2005;47(3):407–21. doi: 10.1016/j.neuron.2005.07.006 pmid:WOS:000231051900011.
[34]  Tanaka K, Augustine GJ. A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron. 2008;59(4):608–20. doi: 10.1016/j.neuron.2008.06.026 pmid:WOS:000258944900011.
[35]  Antunes G, De Schutter E. A Stochastic Signaling Network Mediates the Probabilistic Induction of Cerebellar Long-Term Depression. Journal of Neuroscience. 2012;32(27):9288–300. doi: 10.1523/jneurosci.5976-11.2012 pmid:WOS:000306193900017.
[36]  Kim CH, Chung HJ, Lee HK, Huganir RL. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(20):11725–30. doi: 10.1073/pnas.211132798 pmid:WOS:000171237100132.
[37]  Chung HJ, Steinberg JP, Huganir RL, Linden DJ. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science. 2003;300(5626):1751–5. doi: 10.1126/science.1082915 pmid:WOS:000183459700053.
[38]  Chung HJ, Xia J, Scannevin RH, Zhang XQ, Huganir RL. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. Journal of Neuroscience. 2000;20(19):7258–67. pmid:WOS:000089538400020.
[39]  Matsuda S, Launey T, Mikawa S, Hirai H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. Embo Journal. 2000;19(12):2765–74. doi: 10.1093/emboj/19.12.2765 pmid:WOS:000087908900001.
[40]  Madsen KL, Thorsen TS, Rahbek-Clemmensen T, Eriksen J, Gether U. Protein Interacting with C Kinase 1 (PICK1) Reduces Reinsertion Rates of Interaction Partners Sorted to Rab11-dependent Slow Recycling Pathway. Journal of Biological Chemistry. 2012;287(15):12293–308. doi: 10.1074/jbc.M111.294702 pmid:WOS:000302782200069.
[41]  Citri A, Bhattacharyya S, Ma C, Morishita W, Fang S, Rizo J, et al. Calcium Binding to PICK1 Is Essential for the Intracellular Retention of AMPA Receptors Underlying Long-Term Depression. Journal of Neuroscience. 2010;30(49):16437–52. doi: 10.1523/jneurosci.4478-10.2010 pmid:WOS:000285089100005.
[42]  Kohda K, Kakegawa W, Matsuda S, Yamamoto T, Hirano H, Yuzaki M. The delta 2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(10):E948–E57. doi: 10.1073/pnas.1218380110 pmid:WOS:000316377400012.
[43]  Gladding CM, Collett VJ, Jia ZP, Bashir ZI, Collingridge GL, Molnar E. Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Molecular and Cellular Neuroscience. 2009;40(2):267–79. doi: 10.1016/j.mcn.2008.10.014 pmid:WOS:000263405800015.
[44]  Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. European Journal of Neuroscience. 2007;26(8):2269–78. doi: 10.1111/j.1460-9568.2007.05829.x pmid:WOS:000250262300017.
[45]  Launey T, Endo S, Sakai R, Harano J, Ito M. Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(2):676–81. doi: 10.1073/pnas.0302914101 pmid:WOS:000188210400048.
[46]  Ajima A, Ito M. A UNIQUE ROLE OF PROTEIN PHOSPHATASES IN CEREBELLAR LONG-TERM DEPRESSION. Neuroreport. 1995;6(2):297–300. doi: 10.1097/00001756-199501000-00018 pmid:WOS:A1995QG37500018.
[47]  Tsuruno S, Kawaguchi S, Hirano T. Src-family protein tyrosine kinase negatively regulates cerebellar long-term depression. Neuroscience Research. 2008;61(3):329–32. doi: 10.1016/j.neures.2008.03.004 pmid:WOS:000257004300013.
[48]  Opazo P, Choquet D. A three-step model for the synaptic recruitment of AMPA receptors. Molecular and Cellular Neuroscience. 2011;46(1):1–8. doi: 10.1016/j.mcn.2010.08.014 pmid:WOS:000286487800001.
[49]  Blanpied TA, Scott DB, Ehlers MD. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron. 2002;36(3):435–49. doi: 10.1016/s0896-6273(02)00979-0 pmid:WOS:000178877700012.
[50]  Lu J, Helton TD, Blanpied TA, Racz B, Newpher TM, Weinberg RJ, et al. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to homer. Neuron. 2007;55(6):874–89. doi: 10.1016/j.neuron.2007.06.041 pmid:WOS:000250078500006.
[51]  Sumioka A, Yan D, Tomita S. TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers. Neuron. 2010;66(5):755–67. doi: 10.1016/j.neuron.2010.04.035 pmid:WOS:000278941900014.
[52]  Nomura T, Kakegawa W, Matsuda S, Kohda K, Nishiyama J, Takahashi T, et al. Cerebellar long-term depression requires dephosphorylation of TARP in Purkinje cells. European Journal of Neuroscience. 2012;35(3):402–10. doi: 10.1111/j.1460-9568.2011.07963.x pmid:WOS:000299692800006.
[53]  Matsuda S, Yuzaki M. Stargazin regulates AMPA receptor trafficking from plasma membrane to early endosome and lysosome during long term depression. Journal of Physiological Sciences. 2013;63:S28–S. pmid:WOS:000322352200045. doi: 10.1038/ncomms3759
[54]  Noel J, Ralph GS, Pickard L, Williams J, Molnar E, Uney JB, et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron. 1999;23(2):365–76. doi: 10.1016/s0896-6273(00)80786-2 pmid:WOS:000081218600020.
[55]  Steinberg JP, Huganir RL, Linden DJ. N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(52):18212–6. doi: 10.1073/pnas.0408278102 pmid:WOS:000226102700059.
[56]  Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M. NSF interaction is important for direct insertion of GluR2 at synaptic sites. Molecular and Cellular Neuroscience. 2005;28(4):650–60. doi: 10.1016/j.mcn.2004.11.008 pmid:WOS:000228352200005.
[57]  Kakegawa W, Yuzaki M. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(49):17846–51. doi: 10.1073/pnas.0508910102 pmid:WOS:000233849000055.
[58]  Hanley JG, Khatri L, Hanson PI, Ziff EB. NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron. 2002;34(1):53–67. doi: 10.1016/s0896-6273(02)00638-4 pmid:WOS:000174695100009.
[59]  Fernandez-Monreal M, Brown TC, Royo M, Esteban JA. The Balance between Receptor Recycling and Trafficking toward Lysosomes Determines Synaptic Strength during Long-Term Depression. Journal of Neuroscience. 2012;32(38):13200–5. doi: 10.1523/jneurosci.0061-12.2012 pmid:WOS:000309258100023.
[60]  Matsuda S, Kakegawa W, Budisantoso T, Nomura T, Kohda K, Yuzaki M. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression. Nature Communications. 2013;4:15. doi: 10.1038/ncomms3759 pmid:WOS:000328023000030.
[61]  Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. Postsynaptic signal transduction models for long-term potentiation and depression. Frontiers in Computational Neuroscience. 2010;4:29. doi: 10.3389/fncom.2010.00152 pmid:WOS:000288500300003.
[62]  Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E. Mechanism of glutamate receptor desensitization. Nature. 2002;417(6886):245–53. doi: 10.1038/417245a pmid:WOS:000175592100037.
[63]  Masugi-Tokita M, Tarusawa E, Watanabe M, Molnar E, Fujimoto K, Shigemoto R. Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. Journal of Neuroscience. 2007;27(8):2135–44. doi: 10.1523/jneurosci.2861-06.2007 pmid:WOS:000244381400033.
[64]  Tatsukawa T, Chimura T, Miyakawa H, Yamaguchi K. Involvement of basal protein kinase C and extracellular signal-regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells. Journal of Neuroscience. 2006;26(18):4820–5. doi: 10.1523/jneurosci.0535-06.2006 pmid:WOS:000237271700012.
[65]  Kawaguchi S, Hirano T. Gating of long-term depression by Ca2+/calmodulin-dependent protein kinaseII through enhanced cGMP signalling in cerebellar Purkinje cells. Journal of Physiology-London. 2013;591(7):1707–30. doi: 10.1113/jphysiol.2012.245787 pmid:WOS:000316918300015.
[66]  Boxall AR, Lancaster B, Garthwaite J. Tyrosine kinase is required for long-term depression in the cerebellum. Neuron. 1996;16(4):805–13. doi: 10.1016/s0896-6273(00)80100-2 pmid:WOS:A1996UG61100013.
[67]  Hartell NA. Receptors, second messengers and protein kinases required for heterosynaptic cerebellar long-term depression. Neuropharmacology. 2001;40(1):148–61. doi: 10.1016/s0028-3908(00)00107-6 pmid:WOS:000165562500017.
[68]  Endo S, Shutoh F, Le Dinh T, Okamoto T, Ikeda T, Suzuki M, et al. Dual involvement of G-substrate in motor learning revealed by gene deletion. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3525–30. doi: 10.1073/pnas.0813341106 pmid:WOS:000263844100097.
[69]  Endo S, Suzuki M, Sumi M, Nairn AC, Morita R, Yamakawa K, et al. Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(5):2467–72. doi: 10.1073/pnas.96.5.2467 pmid:WOS:000078956600119.
[70]  Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GCR, et al. Ca2+ requirements for cerebellar long-term synaptic depression: Role for a postsynaptic leaky integrator. Neuron. 2007;54(5):787–800. doi: 10.1016/j.neuron.2007.05.014 pmid:WOS:000247329900011.
[71]  Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. IMPAIRMENT OF MOTOR COORDINATION, PURKINJE-CELL SYNAPSE FORMATION, AND CEREBELLAR LONG-TERM DEPRESSION IN GLUR-DELTA-2 MUTANT MICE. Cell. 1995;81(2):245–52. doi: 10.1016/0092-8674(95)90334-8 pmid:WOS:A1995QV41000013.
[72]  Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluR delta 2 is essential for induction of long-term depression in cerebellar slices. European Journal of Neuroscience. 2007;25(5):1357–62. doi: 10.1111/j.1460-9568.2007.05412.x pmid:WOS:000245399300011.
[73]  Konno K, Matsuda K, Nakamoto C, Uchigashima M, Miyazaki T, Yamasaki M, et al. Enriched Expression of GluD1 in Higher Brain Regions and Its Involvement in Parallel Fiber-Interneuron Synapse Formation in the Cerebellum. Journal of Neuroscience. 2014;34(22):7412–24. doi: 10.1523/jneurosci.0628-14.2014 pmid:WOS:000337131800003.
[74]  Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. Journal of Biological Chemistry. 2000;275(21):16167–73. doi: 10.1074/jbc.M909302199 pmid:WOS:000087291400077.
[75]  Liu YF, Herschkovitz A, Boura-Halfon S, Ronen D, Paz K, LeRoith D, et al. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Molecular and Cellular Biology. 2004;24(21):9668–81. doi: 10.1128/mcb.24.21.9668–9681.2004 pmid:WOS:000224943300037.
[76]  Sanz-Clemente A, Matta JA, Isaac JTR, Roche KW. Casein Kinase 2 Regulates the NR2 Subunit Composition of Synaptic NMDA Receptors. Neuron. 2010;67(6):984–96. doi: 10.1016/j.neuron.2010.08.011 pmid:WOS:000282801100010.
[77]  Manninen T, Makiraatikka E, Ylipaa A, Pettinen A, Leinonen K, Linne M-L. Discrete stochastic simulation of cell signaling: comparison of computational tools. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2006;1:2013–6. pmid:MEDLINE:17945691. doi: 10.1109/iembs.2006.260023
[78]  Alves R, Antunes F, Salvador A. Tools for kinetic modeling of biochemical networks. Nature Biotechnology. 2006;24(6):667–72. doi: 10.1038/nbt0606-667 pmid:WOS:000238187300028.
[79]  De Schutter E. The importance of stochastic signaling processes in the induction of long-term synaptic plasticity. Neural Networks. 2013;47:3–10. doi: 10.1016/j.neunet.2012.11.015 pmid:WOS:000325446800002.
[80]  Blackwell KT, Jedrzejewska-Szmek J. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity. Wiley Interdisciplinary Reviews-Systems Biology and Medicine. 2013;5(6):717–31. doi: 10.1002/wsbm.1240 pmid:WOS:000329286600005.
[81]  DeSouza S, Fu J, States BA, Ziff EB. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. Journal of Neuroscience. 2002;22(9):3493–503. pmid:WOS:000175296200027.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413