全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

DOI: 10.1371/journal.pcbi.1004710

Full-Text   Cite this paper   Add to My Lib

Abstract:

The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions—drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors—pyrimethamine and cycloguanil—across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary “forks in the road” that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance.

References

[1]  Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, et al. Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet. 2012;8(3):e1002551. doi: 10.1371/journal.pgen.1002551. pmid:22412384
[2]  Weinreich DM. High-throughput identification of genetic interactions in HIV-1. Nat Genet. 2011 May;43(5):398–400. doi: 10.1038/ng.820. pmid:21522176
[3]  Weinreich DM, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science. 2006 Apr 7;312(5770):111–4. pmid:16601193 doi: 10.1126/science.1123539
[4]  Borrell S, Teo Y, Giardina F, Streicher EM, Klopper M, Feldmann J, et al. Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol Med Public Health. 2013 Jan;2013(1):65–74. doi: 10.1093/emph/eot003. pmid:24481187
[5]  Ogbunugafor CB, Pease JB, Turner PE. On the possible role of robustness in the evolution of infectious diseases. Chaos Woodbury N. 2010 Jun;20(2):026108. doi: 10.1063/1.3455189
[6]  Lindsey HA, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature. 2013 Feb 28;494(7438):463–7. doi: 10.1038/nature11879. pmid:23395960
[7]  Ferguson AL, Mann JK, Omarjee S, Ndung’u T, Walker BD, Chakraborty AK. Translating HIV Sequences into Quantitative Fitness Landscapes Predicts Viral Vulnerabilities for Rational Immunogen Design. Immunity. 2013 Mar 21;38(3):606–17. doi: 10.1016/j.immuni.2012.11.022. pmid:23521886
[8]  Goulart CP, Mahmudi M, Crona KA, Jacobs SD, Kallmann M, Hall BG, et al. Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes. PLoS ONE. 2013 Feb 13;8(2):e56040. doi: 10.1371/journal.pone.0056040. pmid:23418506
[9]  Lauring AS, Andino R. Exploring the fitness landscape of an RNA virus by using a universal barcode microarray. J Virol. 2011 Apr;85(8):3780–91. doi: 10.1128/JVI.02217-10. pmid:21289109
[10]  Mackinnon MJ, Marsh K. The Selection Landscape of Malaria Parasites. Science. 2010 May 14;328(5980):866–71. doi: 10.1126/science.1185410. pmid:20466925
[11]  Brown KM, Costanzo MS, Xu W, Roy S, Lozovsky ER, Hartl DL. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol Biol Evol. 2010 Dec;27(12):2682–90. doi: 10.1093/molbev/msq160. pmid:20576759
[12]  Costanzo MS, Brown KM, Hartl DL. Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum. PLoS ONE. 2011 May 23;6(5):e19636. doi: 10.1371/journal.pone.0019636. pmid:21625425
[13]  Jiang P-P, Corbett-Detig RB, Hartl DL, Lozovsky ER. Accessible Mutational Trajectories for the Evolution of Pyrimethamine Resistance in the Malaria Parasite Plasmodium vivax. J Mol Evol. 2013 Sep;77(3):81–91. doi: 10.1007/s00239-013-9582-z. pmid:24071997
[14]  Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12025–30. doi: 10.1073/pnas.0905922106. pmid:19587242
[15]  Tan L, Serene S, Chao HX, Gore J. Hidden randomness between fitness landscapes limits reverse evolution. Phys Rev Lett. 2011 May 13;106(19):198102. pmid:21668204 doi: 10.1103/physrevlett.106.198102
[16]  Palmer AC, Toprak E, Baym M, Kim S, Veres A, Bershtein S, et al. Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat Commun [Internet]. 2015 Jun 10 [cited 2015 Jun 26];6.
[17]  Engelst?dter J. Fitness landscapes emerging from pharmacodynamic functions in the evolution of multidrug resistance. J Evol Biol. 2014 May 1;27(5):840–53. doi: 10.1111/jeb.12355. pmid:24720850
[18]  Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G. Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit. PLoS Comput Biol. 2012 Apr 12;8(4):e1002480. doi: 10.1371/journal.pcbi.1002480. pmid:22511863
[19]  Carja O, Liberman U, Feldman MW. Evolution in changing environments: Modifiers of mutation, recombination, and migration. Proc Natl Acad Sci. 2014 Nov 26;201417664. doi: 10.1073/pnas.1417664111
[20]  Flynn KM, Cooper TF, Moore FB-G, Cooper VS. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. pmid:23593024
[21]  Bergstrom CT, Lo M, Lipsitch M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13285–90. pmid:15308772 doi: 10.1073/pnas.0402298101
[22]  Kouyos RD, Abel Zur Wiesch P, Bonhoeffer S. Informed switching strongly decreases the prevalence of antibiotic resistance in hospital wards. PLoS Comput Biol. 2011 Mar;7(3):e1001094. doi: 10.1371/journal.pcbi.1001094. pmid:21390265
[23]  Abel Zur Wiesch P, Kouyos R, Abel S, Viechtbauer W, Bonhoeffer S. Cycling empirical antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog. 2014 Jun;10(6):e1004225. doi: 10.1371/journal.ppat.1004225. pmid:24968123
[24]  Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14494–9. doi: 10.1073/pnas.1409800111. pmid:25246554
[25]  Kouyos RD, Metcalf CJE, Birger R, Klein EY, Abel Zur Wiesch P, Ankomah P, et al. The path of least resistance: aggressive or moderate treatment? Proc Biol Sci. 2014 Nov 7;281(1794). doi: 10.1098/rspb.2014.0566
[26]  Palmer AC, Kishony R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet. 2013 Apr;14(4):243–8. doi: 10.1038/nrg3351. pmid:23419278
[27]  Mira PM, Crona K, Greene D, Meza JC, Sturmfels B, Barlow M. Rational design of antibiotic treatment plans: a treatment strategy for managing evolution and reversing resistance. PloS One. 2015;10(5):e0122283. doi: 10.1371/journal.pone.0122283. pmid:25946134
[28]  Huijben S, Bell AS, Sim DG, Tomasello D, Mideo N, Day T, et al. Aggressive chemotherapy and the selection of drug resistant pathogens. PLoS Pathog. 2013 Sep;9(9):e1003578. doi: 10.1371/journal.ppat.1003578. pmid:24068922
[29]  Read AF, Day T, Huijben S. Colloquium Paper: The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci. 2011 Jun 20;108(Supplement_2):10871–7. doi: 10.1073/pnas.1100299108
[30]  Bell AS, Huijben S, Paaijmans KP, Sim DG, Chan BHK, Nelson WA, et al. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria. PloS One. 2012;7(6):e37172. doi: 10.1371/journal.pone.0037172. pmid:22701563
[31]  Read AF, Huijben S. Evolutionary biology and the avoidance of antimicrobial resistance. Evol Appl. 2009 Feb;2(1):40–51. doi: 10.1111/j.1752-4571.2008.00066.x. pmid:25567846
[32]  Saito-Nakano Y, Tanabe K, Kamei K, Iwagami M, Komaki-Yasuda K, Kawazu S, et al. Genetic evidence for Plasmodium falciparum resistance to chloroquine and pyrimethamine in Indochina and the Western Pacific between 1984 and 1998. Am J Trop Med Hyg. 2008 Oct;79(4):613–9. pmid:18840753
[33]  Tahar R, Basco LK. Molecular epidemiology of malaria in Cameroon. XXII. Geographic mapping and distribution of Plasmodium falciparum dihydrofolate reductase (dhfr) mutant alleles. Am J Trop Med Hyg. 2006 Sep;75(3):396–401. pmid:16968912
[34]  Tinto H, Ouédraogo JB, Zongo I, van Overmeir C, van Marck E, Guiguemdé TR, et al. Sulfadoxine-pyrimethamine efficacy and selection of Plasmodium falciparum DHFR mutations in Burkina Faso before its introduction as intermittent preventive treatment for pregnant women. Am J Trop Med Hyg. 2007 Apr;76(4):608–13. pmid:17426157
[35]  van den Broek IVF, van der Wardt S, Talukder L, Chakma S, Brockman A, Nair S, et al. Drug resistance in Plasmodium falciparum from the Chittagong Hill Tracts, Bangladesh. Trop Med Int Health TM IH. 2004 Jun;9(6):680–7. pmid:15189458 doi: 10.1111/j.1365-3156.2004.01249.x
[36]  Ndiaye D, Daily JP, Sarr O, Ndir O, Gaye O, Mboup S, et al. Defining the origin of Plasmodium falciparum resistant dhfr isolates in Senegal. Acta Trop. 2006 Aug;99(1):106–11. pmid:16905111 doi: 10.1016/j.actatropica.2006.07.002
[37]  Certain LK, Brice?o M, Kiara SM, Nzila AM, Watkins WM, Sibley CH. Characteristics of Plasmodium falciparum dhfr haplotypes that confer pyrimethamine resistance, Kilifi, Kenya, 1987–2006. J Infect Dis. 2008 Jun 15;197(12):1743–51. doi: 10.1086/588198. pmid:18513156
[38]  Gebru-Woldearegai T, Hailu A, Grobusch MP, Kun JFJ. Molecular surveillance of mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum in Ethiopia. Am J Trop Med Hyg. 2005 Dec;73(6):1131–4. pmid:16354825
[39]  Heidari A, Dittrich S, Jelinek T, Kheirandish A, Banihashemi K, Keshavarz H. Genotypes and in vivo resistance of Plasmodium falciparum isolates in an endemic region of Iran. Parasitol Res. 2007 Feb;100(3):589–92. pmid:17024359 doi: 10.1007/s00436-006-0291-z
[40]  Mkulama MAP, Chishimba S, Sikalima J, Rouse P, Thuma PE, Mharakurwa S. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia. Malar J. 2008;7:87. doi: 10.1186/1475-2875-7-87. pmid:18495008
[41]  Anderson TJC, Nair S, Sudimack D, Williams JT, Mayxay M, Newton PN, et al. Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites. Mol Biol Evol. 2005 Dec;22(12):2362–74. pmid:16093566 doi: 10.1093/molbev/msi235
[42]  Ahmed A, Das MK, Dev V, Saifi MA, Wajihullah null , Sharma YD. Quadruple mutations in dihydrofolate reductase of Plasmodium falciparum isolates from Car Nicobar Island, India. Antimicrob Agents Chemother. 2006 Apr;50(4):1546–9. pmid:16569880 doi: 10.1128/aac.50.4.1546-1549.2006
[43]  Molecular assessment of drug resistance in Plasmodium falciparum from Bahr El Gazal Province, Sudan—Anderson—2003—Tropical Medicine & International Health—Wiley Online Library [Internet]. [cited 2015 Aug 19]. Available from:
[44]  Lipka B, Milewska-Bobula B, Filipek M. Monitoring of plasma concentration of pyrimethamine (PYR) in infants with congenital Toxoplasma gondii infection—own observations. Wiad Parazytol. 2011;57(2):87–92. pmid:21682092
[45]  Dzinjalamala FK, Macheso A, Kublin JG, Taylor TE, Barnes KI, Molyneux ME, et al. Association between the pharmacokinetics and in vivo therapeutic efficacy of sulfadoxine-pyrimethamine in Malawian children. Antimicrob Agents Chemother. 2005 Sep;49(9):3601–6. pmid:16127028 doi: 10.1128/aac.49.9.3601-3606.2005
[46]  Dzinjalamala FK, Macheso A, Kublin JG, Taylor TE, Barnes KI, Molyneux ME, et al. Blood folate concentrations and in vivo sulfadoxine-pyrimethamine failure in Malawian children with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg. 2005 Mar;72(3):267–72. pmid:15772319
[47]  Jamaludin A, Mohamad M, Navaratnam V, Yeoh PY, Wernsdorfer WH. Multiple-dose pharmacokinetic study of proguanil and cycloguanil following 12-hourly administration of 100 mg proguanil hydrochloride. Trop Med Parasitol Off Organ Dtsch Tropenmedizinische Ges Dtsch Ges Für Tech Zusammenarbeit GTZ. 1990 Sep;41(3):268–72.
[48]  Weidekamm E, Plozza-Nottebrock H, Forgo I, Dubach UC. Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmaco-kinetic data by computerized curve fitting. Bull World Health Organ. 1982;60(1):115–22. pmid:6979415
[49]  Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. Should evolutionary geneticists worry about higher-order epistasis? Curr Opin Genet Dev. 2013 Dec;23(6):700–7. doi: 10.1016/j.gde.2013.10.007. pmid:24290990
[50]  Zhu C-T, Ingelmo P, Rand DM. G×G×E for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Genet. 2014;10(5):e1004354. doi: 10.1371/journal.pgen.1004354. pmid:24832080
[51]  Remold SK, Lenski RE. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet. 2004 Apr;36(4):423–6. pmid:15072075 doi: 10.1038/ng1324
[52]  Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation environment. Bioinforma Oxf Engl. 2005 Sep 15;21(18):3686–7. doi: 10.1093/bioinformatics/bti584
[53]  Fidock DA, Nomura T, Wellems TE. Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Mol Pharmacol. 1998 Dec;54(6):1140–7. pmid:9855645
[54]  Thapar MM, Gupta S, Spindler C, Wernsdorfer WH, Bj?rkman A. Pharmacodynamic interactions among atovaquone, proguanil and cycloguanil against Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 2003 Jun;97(3):331–7. pmid:15228254 doi: 10.1016/s0035-9203(03)90162-3
[55]  Cowman AF, Foote SJ. Chemotherapy and drug resistance in malaria. Int J Parasitol. 1990 Jul;20(4):503–13. pmid:2210944 doi: 10.1016/0020-7519(90)90198-v
[56]  Weinreich DM, Chao L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evol Int J Org Evol. 2005 Jun;59(6):1175–82. doi: 10.1554/04-392
[57]  Iwasa Y, Michor F, Nowak MA. Stochastic Tunnels in Evolutionary Dynamics. Genetics. 2004 Mar 1;166(3):1571–9. pmid:15082570 doi: 10.1534/genetics.166.3.1571
[58]  Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE. Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol. 2007;7:60. pmid:17433106 doi: 10.1186/1471-2148-7-60
[59]  Whitlock MC, Phillips PC, Moore FB, Tonsor SJ. Multiple Fitness Peaks and Epistasis. Annu Rev Ecol Syst. 1995;26(1):601–29. doi: 10.1146/annurev.es.26.110195.003125
[60]  Lagator M, Colegrave N, Neve P. Selection history and epistatic interactions impact dynamics of adaptation to novel environmental stresses. Proc Biol Sci. 2014 Nov 7;281(1794). doi: 10.1098/rspb.2014.1679
[61]  Weinreich DM, Sindi S, Watson RA. Finding the boundary between evolutionary basins of attraction, and implications for Wright’s fitness landscape analogy. J Stat Mech Theory Exp. 2012 Mar;523–36. doi: 10.1088/1742-5468/2013/01/p01001
[62]  Otwinowski J, Plotkin JB. Inferring fitness landscapes by regression produces biased estimates of epistasis. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2301–9. doi: 10.1073/pnas.1400849111. pmid:24843135
[63]  Mustonen V, L?ssig M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 2009 Mar;25(3):111–9. doi: 10.1016/j.tig.2009.01.002. pmid:19232770
[64]  Keshelava N, Groshen S, Reynolds CP. Cross-resistance of topoisomerase I and II inhibitors in neuroblastoma cell lines. Cancer Chemother Pharmacol. 2000;45(1):1–8. pmid:10647494 doi: 10.1007/pl00006736
[65]  Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat Commun. 2014 Dec 17;5:5792. doi: 10.1038/ncomms6792. pmid:25517437
[66]  Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF, Nowak MA. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat Med. 2012 Sep;18(9):1378–85. pmid:22941277 doi: 10.1038/nm.2892
[67]  Chou TC. Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol. 1976 Jul 7;59(2):253–76. pmid:957690 doi: 10.1016/0022-5193(76)90169-7
[68]  Moreno-Gamez S, Hill AL, Rosenbloom DIS, Petrov DA, Nowak MA, Pennings PS. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2874–83. doi: 10.1073/pnas.1424184112. pmid:26038564

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413