全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model

DOI: 10.1371/journal.pcbi.1004712

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis.

References

[1]  Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–354. doi: 10.1038/nature12626. pmid:24048067
[2]  Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi: 10.1056/NEJMoa1113205. pmid:22397650
[3]  Marusyk A, Almendro V, Polyak K. PIntra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer;(5):323–34. pmid:22513401 doi: 10.1038/nrc3261
[4]  Lloyd MC, Allam-Nandyala P, Purohit CN, Burke N, Coppola D, Bui MM. Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: how reliable is it? J Pathol Inform. 2010;1(1):29. doi: 10.4103/2153-3539.74186. pmid:21221174
[5]  Gaedicke S, Braun F, Prasad S, Machein M, Firat E, Hettich M, et al. Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proc Natl Acad Sci USA. 2014;p. 201314189.
[6]  S?vik ?, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Rad Oncol Biol Phys. 2009;73(3):650–658. doi: 10.1016/j.ijrobp.2008.11.001.
[7]  Malinen E, S?vik ?, Hristov D, Bruland ?S, Olsen DR. Adapting radiotherapy to hypoxic tumours. Phys Med Biol. 2006;51(19):4903. doi: 10.1088/0031-9155/51/19/012. pmid:16985278
[8]  Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, et al. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol. 2010;55(12):3271–85. doi: 10.1088/0031-9155/55/12/001. pmid:20484781
[9]  Alfonso JCL, Jagiella N, Nú?ez L, Herrero MA, Drasdo D. Estimating dose painting effects in radiotherapy: a mathematical model. PLOS ONE. 2014;9(2):e89380. doi: 10.1371/journal.pone.0089380. pmid:24586734
[10]  Powathil GG, Adamson DJA, Chaplain MAJ. Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput Biol. 2013;9(7):e1003120. doi: 10.1371/journal.pcbi.1003120.
[11]  H?ckel M, Schlenger K, Mitze M, Sch?ffer U, Vaupel P. Hypoxia and radiation response in human tumors. In: Semin. Radiat. Oncol. vol. 6; 1996. p. 3–9.
[12]  Okunieff P, Hoeckel M, Dunphy EP, Schlenger K, Knoop C, Vaupel P. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Rad Oncol Biol Phys. 1993;26(4):631–636. doi: 10.1016/0360-3016(93)90280-9.
[13]  Palcic B, Skarsgard LD. Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat Res. 1984;100(2):328–339. doi: 10.2307/3576354. pmid:6494444
[14]  Alarcón T, Byrne HM, Maini PK. A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol. 2003;225(2):257–274. doi: 10.1016/S0022-5193(03)00244-3. pmid:14575659
[15]  Powathil G, Kohandel M, Milosevic M, Sivaloganathan S. Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies. Comput Math Methods Med. 2012;2012. doi: 10.1155/2012/410602. pmid:22400049
[16]  Scott JG, Hjelmeland AB, Chinnaiyan P, Anderson ARA, Basanta D. Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLOS Comp Biol. 2014;10:e1003433. doi: 10.1371/journal.pcbi.1003433.
[17]  Al-Shammari AA, Gaffney EA, Egginton S. Modelling capillary oxygen supply capacity in mixed muscles: Capillary domains revisited. J Theor Biol. 2014;356:47–61. doi: 10.1016/j.jtbi.2014.04.016. pmid:24768706
[18]  Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971;133(2):275–288. doi: 10.1084/jem.133.2.275.
[19]  Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–989. doi: 10.1038/nm0901-987. pmid:11533692
[20]  Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Prac Oncol. 2006;3(1):24–40. doi: 10.1038/ncponc0403.
[21]  Ripley BD. The second-order analysis of stationary point processes. J Appl Prob. 1976;p. 255–266.
[22]  Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA. A cellular automaton model of early tumor growth and invasion. J Theor Biol. 2001;213(3):315–31. doi: 10.1006/jtbi.2001.2385. pmid:11735284
[23]  Anderson ARA, Chaplain MAJ. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol. 1998;60(5):857–899. doi: 10.1006/bulm.1998.0042. pmid:9739618
[24]  Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–899. doi: 10.1038/nrc1478.
[25]  Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins; 2012.
[26]  Gallaher J, Babu A, Plevritis S, Anderson ARA. Bridging population and tissue scale tumor dynamics: a new paradigm for understanding differences in tumor growth and metastatic disease. Cancer Res. 2014;74(2):426–435. doi: 10.1158/0008-5472.CAN-13-0759.
[27]  Lloyd MC, Alfarouk KO, Verduzco D, Bui MM, Gillies RJ, Ibrahim ME, et al. Vascular measurements correlate with estrogen receptor status. BMC Cancer. 2014;14(1):279. doi: 10.1186/1471-2407-14-279. pmid:24755315
[28]  Owen MR, Alarcón T, Maini PK, Byrne HM. Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol. 2009;58(4-5):689–721. doi: 10.1007/s00285-008-0213-z.
[29]  Stamper IJ, Byrne HM, Owen MR, Maini PK. Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull Math Biol. 2007;69(8):2737–2772. doi: 10.1007/s11538-007-9253-6. pmid:17874270
[30]  Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52(6):409–415. doi: 10.1113/jphysiol.1919.sp001839. pmid:16993405
[31]  Alarcón T, Byrne HM, Maini PK. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol. 2004;229(3):395–411. doi: 10.1016/j.jtbi.2004.04.016. pmid:15234206
[32]  Alarcón T, Byrne HM, Maini PK. Towards whole-organ modelling of tumour growth. Prog Biophys Mol Biol. 2004;85(2):451–472. pmid:15142757 doi: 10.1016/j.pbiomolbio.2004.02.004
[33]  Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–149. doi: 10.1046/j.1365-2184.2003.00266.x. pmid:12814430
[34]  Gerlee P, Anderson ARA. A hybrid cellular automaton model of clonal evolution in cancer: The emergence of the glycolytic phenotype. J Theor Biol. 2008;250(4):705–722. doi: 10.1016/j.jtbi.2007.10.038. pmid:18068192
[35]  Wojtkowiak JW, Sane KM, Kleinman M, Sloane BF, Reiners JJ, Mattingly RR. Aborted autophagy and nonapoptotic death induced by farnesyl transferase inhibitor and lovastatin. J Pharm Exp Ther. 2011;337(1):65–74. doi: 10.1124/jpet.110.174573.
[36]  Byrne HM, Chaplain MAJ. Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth. Comput Math Methods Med. 1998;1(3):223–235. doi: 10.1080/10273669808833021
[37]  Lea DA. Actions of radiations on living cells. Cambridge: University Press.; 1946.
[38]  Dale RG. Time-dependent tumour repopulation factors in linear-quadratic equations—implications for treatment strategies. Radiother Oncol. 1989;15(4):371–381. doi: 10.1016/0167-8140(89)90084-4. pmid:2798939
[39]  Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58(690):515–528. doi: 10.1259/0007-1285-58-690-515. pmid:4063711
[40]  Chapman JD, Gillespie CJ, Reuvers AP, Dugle DL. The inactivation of Chinese hamster cells by X rays: the effects of chemical modifiers on single-and double-events. Rad Res. 1975;64(2):365–375. doi: 10.2307/3574272.
[41]  Abercrombie M. Contact inhibition in tissue culture. In vitro. 1970;6(2):128–142. doi: 10.1007/BF02616114. pmid:4943054
[42]  Anderson ARA, Rejniak KA, Gerlee P, Quaranta V. Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol. 2009;58(4):579–624. doi: 10.1007/s00285-008-0210-2.
[43]  Gatenby RA, Gawlinski ET. A reaction-diffusion model of cancer invasion. Cancer Res. 1996;56(24):5745–53. pmid:8971186
[44]  Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006;66(10):5216–5223. doi: 10.1158/0008-5472.CAN-05-4193.
[45]  Chen C, Byrne H, King J. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids. J Math Biol. 2001;43(3):191–220. doi: 10.1007/s002850100091.
[46]  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.
[47]  Anderson ARA. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol. 2005;22(2):163. doi: 10.1093/imammb/dqi005. pmid:15781426
[48]  Norman M, Wisniewska KA, Lawrenson K, Garcia-Miranda P, Tada M, Kajita M, et al. Loss of Scribble causes cell competition in mammalian cells. J Cell Sci. 2012;125(1):59–66. doi: 10.1242/jcs.085803. pmid:22250205
[49]  Connor AJ, Nowak RP, Lorenzon E, Thomas M, Herting F, Hoert S, et al. An integrated approach to quantitative modelling in angiogenesis research. Journal of The Royal Society Interface. 2015;12(110):20150546. doi: 10.1098/rsif.2015.0546.
[50]  Araujo RP, McElwain DLS. New insights into vascular collapse and growth dynamics in solid tumors. J Theor Biol. 2004;228(3):335–346. doi: 10.1016/j.jtbi.2004.01.009. pmid:15135032
[51]  Jackson TL, Byrne HM. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math Biosci. 2000;164(1):17–38. doi: 10.1016/S0025-5564(99)00062-0. pmid:10704636
[52]  Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Laboratory investigation. 2004;84(4):397–405. doi: 10.1038/labinvest.3700070. pmid:14990981
[53]  Freyer JP, Tustanoff E, Franko AJ, Sutherland RM. In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J Cell Physiol. 1984;118(1):53–61. doi: 10.1002/jcp.1041180111. pmid:6690452
[54]  Calabresi P, Schein PS, Rosenberg SA. Medical oncology: basic principles and clinical management of cancer. MacMillan Pub. Co., New York, NY; 1985.
[55]  Corwin D, Holdsworth C, Rockne RC, Trister AD, Mrugala MM, Rockhill JK, et al. Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma. PLOS ONE. 2013;8:e79115. doi: 10.1371/journal.pone.0079115. pmid:24265748
[56]  Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–1253. doi: 10.1111/j.1582-4934.2011.01258.x. pmid:21251211
[57]  Nugent LJ, Jain RK. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 1984;44(1):238–244.
[58]  McGoron AJ, Nair P, Schubert RW. Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia. Ann Biomed Eng. 1997;25(3):565–572. doi: 10.1007/BF02684195. pmid:9146809
[59]  Casciari JJ, Sotirchos SV, Sutherland RM. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol. 1992;151(2):386–394. doi: 10.1002/jcp.1041510220. pmid:1572910
[60]  Arig IH. Free base lysine increases survival and reduces metastasis in prostate cancer model. J Cancer Sci Ther. 2011;1(14). doi: 10.4172/1948-5956.s1-004
[61]  Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Rad Res. 1997;147(5):541–550. doi: 10.2307/3579620.
[62]  Zaider M, Hanin L. Tumor control probability in radiation treatment. Med Phys. 2011;38(2):574–583. doi: 10.1118/1.3521406. pmid:21452694
[63]  Lemasson B, Valable S, Farion R, Krainik A, Rémy C, Barbier EL. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med. 2013;69(1):18–26. doi: 10.1002/mrm.24218. pmid:22431289
[64]  Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 1995;147(1):9. pmid:7541613
[65]  Zhang L, Yankelevitz DF, Henschke CI, Reeves AP, Vazquez MF, Carter D. Variation in vascular distribution in small lung cancers. Lung Cancer. 2010;68(3):389–393. doi: 10.1016/j.lungcan.2009.07.006. pmid:19716621
[66]  Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–1393. pmid:10728704
[67]  Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62. doi: 10.1126/science.1104819.
[68]  Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31(17):2205–2218. doi: 10.1200/JCO.2012.46.3653.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413