Cumulative psychophysical evidence suggests that the shape of closed contours is analysed by means of their radial frequency components (RFC). However, neurophysiological evidence for RFC-based representations is still missing. We investigated the representation of radial frequency in the human visual cortex with functional magnetic resonance imaging. We parametrically varied the radial frequency, amplitude and local curvature of contour shapes. The stimuli evoked clear responses across visual areas in the univariate analysis, but the response magnitude did not depend on radial frequency or local curvature. Searchlight-based, multivariate representational similarity analysis revealed RFC specific response patterns in areas V2d, V3d, V3AB, and IPS0. Interestingly, RFC-specific representations were not found in hV4 or LO, traditionally associated with visual shape analysis. The modulation amplitude of the shapes did not affect the responses in any visual area. Local curvature, SF-spectrum and contrast energy related representations were found across visual areas but without similar specificity for visual area that was found for RFC. The results suggest that the radial frequency of a closed contour is one of the cortical shape analysis dimensions, represented in the early and mid-level visual areas.
References
[1]
Wilkinson F., Wilson H.R., Habak C. (1998). Detection and recognition of radial frequency patterns. Vision Res 38, 3555–3568 pmid:9893789 doi: 10.1016/s0042-6989(98)00039-x
[2]
Wilson H.R., Wilkinson F. (2002). Symmetry perception: a novel approach for biological shapes. Vision Res 42, 589–597 pmid:11853776 doi: 10.1016/s0042-6989(01)00299-1
[3]
Jeffrey B.G., Wang Y.Z., Birch E.E. (2002). Circular contour frequency in shape discrimination. Vision Res 42, 2773–2779 pmid:12450496 doi: 10.1016/s0042-6989(02)00332-2
[4]
Loffler G., Wilson H.R., Wilkinson F. (2003). Local and global contributions to shape discrimination. Vision Res 43, 519–530 pmid:12594998 doi: 10.1016/s0042-6989(02)00686-7
[5]
Bell J., Badcock D.R. (2008). Luminance and contrast cues are integrated in global shape detection with contours. Vision Res 48, 2336–2344 doi: 10.1016/j.visres.2008.07.015. pmid:18703078
[6]
Bell J., Badcock D.R. (2009). Narrow-band radial frequency shape channels revealed by sub-threshold summation. Vision Res 49, 843–850 doi: 10.1016/j.visres.2009.03.001. pmid:19275912
[7]
Hess R.F., Achtman R.L., Wang Y.Z. (2001). Detection of constrast-defined shape. Journal of the Optical Society of America A, Optics, image science, and vision 18, 2220–2227 pmid:11551057 doi: 10.1364/josaa.18.002220
[8]
Hess R.F., Wang Y.Z., Dakin S.C. (1999). Are judgements of circularity local or global? Vision Res 39, 4354–4360 pmid:10789429 doi: 10.1016/s0042-6989(99)00153-4
[9]
Bell J., Hancock S., Kingdom F.A., Peirce J.W. (2010). Global shape processing: which parts form the whole? J Vis 10, 16 doi: 10.1167/10.6.16
[10]
Mullen K.T., Beaudot W.H. (2002). Comparison of color and luminance vision on a global shape discrimination task. Vision Res 42, 565–575 pmid:11853774 doi: 10.1016/s0042-6989(01)00305-4
[11]
Anderson N.D., Habak C., Wilkinson F., Wilson H.R. (2007). Evaluating shape after-effects with radial frequency patterns. Vision Res 47, 298–308 pmid:17178143 doi: 10.1016/j.visres.2006.02.013
[12]
Bell J., Wilkinson F., Wilson H.R., Loffler G., Badcock D.R. (2009). Radial frequency adaptation reveals interacting contour shape channels. Vision Res 49, 2306–2317 doi: 10.1016/j.visres.2009.06.022. pmid:19580822
[13]
Habak C., Wilkinson F., Zakher B., Wilson H.R. (2004). Curvature population coding for complex shapes in human vision. Vision Res 44, 2815–2823 pmid:15342225 doi: 10.1016/j.visres.2004.06.019
[14]
Wilkinson F., James T.W., Wilson H.R., Gati J.S., Menon R.S., Goodale M.A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Curr Biol 10, 1455–1458 pmid:11102809 doi: 10.1016/s0960-9822(00)00800-9
[15]
Dumoulin S.O., Hess R.F. (2007). Cortical specialization for concentric shape processing. Vision Res 47, 1608–1613 pmid:17449081 doi: 10.1016/j.visres.2007.01.031
[16]
Kanwisher N., Woods R.P., Iacoboni M., Mazziotta J.C. (1997). A locus in human extrastriate cortex for visual shape analysis. J Cogn Neurosci 9, 133–142 doi: 10.1162/jocn.1997.9.1.133. pmid:23968185
[17]
Malach R., Reppas J.B., Benson R.R., Kwong K.K., Jiang H., Kennedy W.A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92, 8135–8139 pmid:7667258 doi: 10.1073/pnas.92.18.8135
[18]
Larsson J., Heeger D.J. (2006). Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26, 13128–13142 pmid:17182764 doi: 10.1523/jneurosci.1657-06.2006
[19]
Grill-Spector K., Kourtzi Z., Kanwisher N. (2001). The lateral occipital complex and its role in object recognition. Vision Res 41, 1409–1422 pmid:11322983 doi: 10.1016/s0042-6989(01)00073-6
[20]
Drucker D.M., Aguirre G.K. (2009). Different spatial scales of shape similarity representation in lateral and ventral LOC. Cereb Cortex 19, 2269–2280 doi: 10.1093/cercor/bhn244. pmid:19176637
[21]
Hegde J., Van Essen D.C. (2000). Selectivity for complex shapes in primate visual area V2. J Neurosci 20, RC61 pmid:10684908
[22]
Anzai A., Peng X., Van Essen D.C. (2007). Neurons in monkey visual area V2 encode combinations of orientations. Nat Neurosci 10, 1313–1321 pmid:17873872 doi: 10.1038/nn1975
[23]
Hegde J, Van Essen D.C. (2007). A comparative study of shape representation in macaque visual areas v2 and v4. Cereb Cortex 17, 1100–1116 pmid:16785255 doi: 10.1093/cercor/bhl020
[24]
Willmore B.D., Prenger R.J., Gallant J.L. (2010). Neural representation of natural images in visual area V2. J Neurosci 30, 2102–2114 doi: 10.1523/JNEUROSCI.4099-09.2010. pmid:20147538
[25]
Gallant J.L., Braun J., Van Essen D.C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259, 100–103 pmid:8418487 doi: 10.1126/science.8418487
[26]
Muller K.M., Wilke M., Leopold D.A. (2009). Visual adaptation to convexity in macaque area V4. Neuroscience 161, 655–662 doi: 10.1016/j.neuroscience.2009.03.070. pmid:19345725
[27]
Pasupathy A., Connor C.E. (2002). Population coding of shape in area V4. Nat Neurosci 5, 1332–1338 pmid:12426571 doi: 10.1038/972
[28]
Pasupathy A., Connor C.E. (1999). Responses to contour features in macaque area V4. J Neurophysiol 82, 2490–2502 pmid:10561421
[29]
Gallant J.L., Connor C.E., Rakshit S., Lewis J.W., Van Essen D.C. (1996). Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol 76, 2718–2739 pmid:8899641
[30]
McManus J.N., Li W., Gilbert C.D. (2011). Adaptive shape processing in primary visual cortex. Proc Natl Acad Sci U S A 108, 9739–9746 doi: 10.1073/pnas.1105855108. pmid:21571645
[31]
Kriegeskorte N., Mur M., Bandettini P. (2008). Representational similarity analysis—connecting the branches of systems neuroscience. Frontiers in systems neuroscience 2, 4 doi: 10.3389/neuro.06.004.2008. pmid:19104670
[32]
Kriegeskorte N., Goebel R., Bandettini P. (2006). Information-based functional brain mapping. Proc Natl Acad Sci U S A 103, 3863–3868 pmid:16537458 doi: 10.1073/pnas.0600244103
[33]
Henriksson L., Karvonen J., Salminen-Vaparanta N., Railo H., Vanni S. (2012). Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked FMRI designs. PLoS One 7, e36859 doi: 10.1371/journal.pone.0036859. pmid:22590626
[34]
Kriegeskorte N., Kievit R.A. (2013). Representational geometry: integrating cognition, computation, and the brain. Trends in cognitive sciences 17, 401–412 doi: 10.1016/j.tics.2013.06.007. pmid:23876494
[35]
Kourtzi Z., Tolias A.S., Altmann C.F., Augath M., Logothetis N.K. (2003). Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37, 333–346 pmid:12546827 doi: 10.1016/s0896-6273(02)01174-1
[36]
Altmann C.F., Bulthoff H.H., Kourtzi Z. (2003). Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13, 342–349 pmid:12593802 doi: 10.1016/s0960-9822(03)00052-6
[37]
Mannion D.J., Clifford C.W. (2011). Cortical and behavioral sensitivity to eccentric polar form. J Vis 11, doi: 10.1167/11.6.17
[38]
Mannion D.J., Kersten D.J., Olman C.A. (2013). Consequences of polar form coherence for fMRI responses in human visual cortex. Neuroimage 78, 152–158 doi: 10.1016/j.neuroimage.2013.04.036. pmid:23608060
[39]
Ostwald D., Lam J.M., Li S., Kourtzi Z. (2008). Neural coding of global form in the human visual cortex. J Neurophysiol 99, 2456–2469 doi: 10.1152/jn.01307.2007. pmid:18322002
[40]
Haushofer J., Baker C.I., Livingstone M.S., Kanwisher N. (2008). Privileged coding of convex shapes in human object-selective cortex. J Neurophysiol 100, 753–762 doi: 10.1152/jn.90310.2008. pmid:18579661
[41]
Collins C.E., Airey D.C., Young N.A., Leitch D.B., Kaas J.H. (2010). Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci U S A 107, 15927–15932 doi: 10.1073/pnas.1010356107. pmid:20798050
[42]
Weber B., Keller A.L., Reichold J., Logothetis N.K. (2008). The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb Cortex 18, 2318–2330 doi: 10.1093/cercor/bhm259. pmid:18222935
[43]
Vanni S., Sharifian F., Heikkinen H., Vigario R. (2015). Modeling fMRI signals can provide insights into neural processing in the cerebral cortex. J Neurophysiol 114, 768–780 doi: 10.1152/jn.00332.2014. pmid:25972586
[44]
Heikkinen H., Sharifian F., Vigario R., Vanni S. (2015). Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex. J Neurophysiol 114, 57–69 doi: 10.1152/jn.00169.2015. pmid:25925319
[45]
Angelucci A., Levitt J.B., Walton E.J., Hupe J.M., Bullier J., Lund J.S. (2002). Circuits for local and global signal integration in primary visual cortex. J Neurosci 22, 8633–8646 pmid:12351737
[46]
Skrandies W. The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences. In: Autrum H, Ottoson D, Perl E, Schmidt R, Shimazu H, Willis W, editors. Progress in Sensory Physiology. Progress in Sensory Physiology. 8: Springer Berlin Heidelberg; 1987. p. 1–93.
[47]
Van Essen D.C., Newsome W.T., Maunsell J.H. (1984). The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24, 429–448 pmid:6740964 doi: 10.1016/0042-6989(84)90041-5
[48]
Portin K., Vanni S., Virsu V., Hari R. (1999). Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings. Experimental brain research 124, 287–294 pmid:9989434 doi: 10.1007/s002210050625
[49]
Hagler D.J. Jr. (2014). Visual field asymmetries in visual evoked responses. J Vis 14, 13 doi: 10.1167/14.14.13
[50]
McAnany J.J., Levine M.W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Res 47, 2327–2336 pmid:17662333 doi: 10.1016/j.visres.2007.05.013
[51]
Wandell B.A., Dumoulin S.O., Brewer A.A. (2007). Visual field maps in human cortex. Neuron 56, 366–383 pmid:17964252 doi: 10.1016/j.neuron.2007.10.012
[52]
Schmidtmann G., Logan A.J., Kennedy G.J., Gordon G.E., Loffler G. (2015). Distinct lower visual field preference for object shape. Journal of Vision 15, 18–18 doi: 10.1167/15.5.18
[53]
Poirier F.J., Wilson H.R. (2007). Object perception and masking: contributions of sides and convexities. Vision Res 47, 3001–3011 pmid:17889924 doi: 10.1016/j.visres.2007.08.003
[54]
Kurki I., Saarinen J., Hyvarinen A. (2014). Investigating shape perception by classification images. J Vis 14, doi: 10.1167/14.12.24
[55]
Gorbet D.J., Wilkinson F., Wilson H.R. (2012). An fMRI examination of the neural processing of periodic motion trajectories. J Vis 12, 5 doi: 10.1167/12.11.5
[56]
Gorbet D.J., Wilkinson F., Wilson H.R. (2014). Neural correlates of radial frequency trajectory perception in the human brain. J Vis 14, doi: 10.1167/14.1.11
[57]
Olshausen B.A., Field D.J. (2004). Sparse coding of sensory inputs. Current opinion in neurobiology 14, 481–487 pmid:15321069 doi: 10.1016/j.conb.2004.07.007
[58]
Poggio T. (1990). A Theory of How the Brain Might Work. Cold Spring Harbor Symposia on Quantitative Biology 55, 899–910 pmid:2132866 doi: 10.1101/sqb.1990.055.01.084
[59]
Penny W.D., Friston K.J., Ashburner J.T., Kiebel S.J., Nichols T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of Functional Brain Images: Elsevier Science; 2006.
Wager T.D., Nichols T.E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18, 293–309 pmid:12595184 doi: 10.1016/s1053-8119(02)00046-0
[62]
Kriegeskorte N. (2011). Pattern-information analysis: from stimulus decoding to computational-model testing. Neuroimage 56, 411–421 doi: 10.1016/j.neuroimage.2011.01.061. pmid:21281719
[63]
Nili H., Wingfield C., Walther A., Su L., Marslen-Wilson W., Kriegeskorte N. (2014). A toolbox for representational similarity analysis. PLoS computational biology 10, e1003553 doi: 10.1371/journal.pcbi.1003553. pmid:24743308