Tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with specific parameters poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate streamlines from an ensemble of algorithms (deterministic and probabilistic) and systematically varying parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validated prediction error of the diffusion MRI data than optimized connectomes generated using a single-algorithm or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.
References
[1]
Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51: 527–539. pmid:16950152 doi: 10.1016/j.neuron.2006.08.012
[2]
Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di Martino A, et al. (2013) Imaging human connectomes at the macroscale. Nature Methods 10: 524–539. doi: 10.1038/nmeth.2482. pmid:23722212
[3]
Thomason ME, Thompson PM (2011) Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol 7: 63–85. doi: 10.1146/annurev-clinpsy-032210-104507. pmid:21219189
[4]
Wandell BA, Yeatman JD (2013) Biological development of reading circuits. Curr Opin Neurobiol 23: 261–268. doi: 10.1016/j.conb.2012.12.005. pmid:23312307
[5]
Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1: 169–183. doi: 10.1089/brain.2011.0033. pmid:22433046
[6]
Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 73: 239–254. doi: 10.1016/j.neuroimage.2012.06.081. pmid:22846632
[7]
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47. pmid:1822724 doi: 10.1093/cercor/1.1.1
[8]
Sporns O, Tononi G, Kotter R (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol 1: e42. pmid:16201007 doi: 10.1371/journal.pcbi.0010042
[9]
Hagmann P, Cammoun L, Gigandet X, Gerhard S, Grant PE, Wedeen V, et al. (2010) MR connectomics: Principles and challenges. J Neurosci Methods 194: 34–45. doi: 10.1016/j.jneumeth.2010.01.014. pmid:20096730
[10]
Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45: 265–269. pmid:9989633 doi: 10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3
[11]
Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging 18: 242–254. pmid:12884338 doi: 10.1002/jmri.10350
[12]
Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50: 1077–1088. pmid:14587019 doi: 10.1002/mrm.10609
[13]
Jiang H, van Zijl PCM, Kim J, Pearlson GD, Mori S (2006) DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Computer Methods and Programs in Biomedicine 81: 106–116. pmid:16413083 doi: 10.1016/j.cmpb.2005.08.004
[14]
Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, et al. (2006) Camino: Open-Source Diffusion-MRI Reconstruction and Processing. Proc Intl Soc Mag Reson Med: 2759.
[15]
Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Proc Intl Soc Mag Reson Med 15: 3720.
[16]
Sherbondy AJ, Dougherty RF, Ben-Shachar M, Napel S, Wandell BA (2008) ConTrack: finding the most likely pathways between brain regions using diffusion tractography. J Vis 8: 15 11–16. doi: 10.1167/8.9.15
[17]
Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med: 3537.
[18]
Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology 22: 53–66. doi: 10.1002/ima.22005
[19]
Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96: 10422–10427. pmid:10468624 doi: 10.1073/pnas.96.18.10422
[20]
Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44: 625–632. pmid:11025519 doi: 10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o
[21]
Lazar M, Weinstein DM, Tsuruda JS, Hasan KM, Arfanakis K, Meyerand ME, et al. (2003) White matter tractography using diffusion tensor deflection. Hum Brain Mapp 18: 306–321. pmid:12632468 doi: 10.1002/hbm.10102
[22]
Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, et al. (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12: 184–195. pmid:10913324 doi: 10.1006/nimg.2000.0607
[23]
Mangin JF, Poupon C, Cointepas Y, Riviere D, Papadopoulos-Orfanos D, Clark CA, et al. (2002) A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data—a technical review. NMR Biomed 15: 481–492. pmid:12489097 doi: 10.1002/nbm.780
[24]
Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, Valdes-Hernandez PA, Martinez-Montes E, Aleman-Gomez Y, et al. (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36: 645–660. pmid:17466539 doi: 10.1016/j.neuroimage.2007.02.012
[25]
Kreher BW, Mader I, Kiselev VG (2008) Gibbs tracking: a novel approach for the reconstruction of neuronal pathways. Magn Reson Med 60: 953–963. doi: 10.1002/mrm.21749. pmid:18816816
[26]
Jbabdi S, Bellec P, Toro R, Daunizeau J, Pelegrini-Issac M, Benali H (2008) Accurate anisotropic fast marching for diffusion-based geodesic tractography. Int J Biomed Imaging 2008: 320195. doi: 10.1155/2008/320195. pmid:18299703
[27]
Sherbondy AJ, Dougherty RF, Ananthanarayanan R, Modha DS, Wandell BA (2009) Think global, act local; projectome estimation with BlueMatter. Med Image Comput Comput Assist Interv 12: 861–868. pmid:20426069 doi: 10.1007/978-3-642-04268-3_106
[28]
Fillard P, Poupon C, Mangin JF (2009) A novel global tractography algorithm based on an adaptive spin glass model. Med Image Comput Comput Assist Interv 12: 927–934. doi: 10.1007/978-3-642-04268-3_114
[29]
Sotiropoulos SN, Bai L, Morgan PS, Constantinescu CS, Tench CR (2010) Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach. Neuroimage 49: 2444–2456. doi: 10.1016/j.neuroimage.2009.10.001. pmid:19818861
[30]
Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2011) Global fiber reconstruction becomes practical. Neuroimage 54: 955–962. doi: 10.1016/j.neuroimage.2010.09.016. pmid:20854913
[31]
Lemkaddem A, Skioldebrand D, Dal Palu A, Thiran JP, Daducci A (2014) Global tractography with embedded anatomical priors for quantitative connectivity analysis. Front Neurol 5: 232. doi: 10.3389/fneur.2014.00232. pmid:25452742
[32]
Parizel PM, Van Rompaey V, Van Loock R, Van Hecke W, Van Goethem JW, Leemans A, et al. (2007) Influence of user-defined parameters on diffusion tensor tractography of the corticospinal tract. Neuroradiol J 20: 139–147. pmid:24299634 doi: 10.1177/197140090702000202
[33]
Taoka T, Morikawa M, Akashi T, Miyasaka T, Nakagawa H, Kiuchi K, et al. (2009) Fractional anisotropy-threshold dependence in tract-based diffusion tensor analysis: evaluation of the uncinate fasciculus in Alzheimer disease. AJNR Am J Neuroradiol 30: 1700–1703. doi: 10.3174/ajnr.A1698. pmid:19541775
[34]
Bastiani M, Shah NJ, Goebel R, Roebroeck A (2012) Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62: 1732–1749. doi: 10.1016/j.neuroimage.2012.06.002. pmid:22699045
[35]
Domin M, Langner S, Hosten N, Lotze M (2014) Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS One 9: e98211. doi: 10.1371/journal.pone.0098211. pmid:24853163
[36]
Kunimatsu A, Aoki S, Masutani Y, Abe O, Hayashi N, Mori H, et al. (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3: 11–17. pmid:16093615 doi: 10.2463/mrms.3.11
[37]
Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, Buchfelder M, et al. (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34: 949–956. pmid:17166744 doi: 10.1016/j.neuroimage.2006.08.051
[38]
Li L, Rilling JK, Preuss TM, Glasser MF, Hu X (2012) The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography. Hum Brain Mapp 33: 1894–1913. doi: 10.1002/hbm.21332. pmid:21928316
[39]
Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A, et al. (2015) Validation of High-Resolution Tractography Against In Vivo Tracing in the Macaque Visual Cortex. Cereb Cortex: Epub ahead of print. doi: 10.1093/cercor/bhu326
[40]
Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al. (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111: 16574–16579. doi: 10.1073/pnas.1405672111. pmid:25368179
[41]
Chamberland M, Whittingstall K, Fortin D, Mathieu D, Descoteaux M (2014) Real-time multi-peak tractography for instantaneous connectivity display. Front Neuroinform 8: 59. doi: 10.3389/fninf.2014.00059. pmid:24910610
[42]
Dasarathy BV, Sheela BV (1979) Composite classifier system design: concepts and methodology. Proceedings of the IEEE 67: 708–713. doi: 10.1109/proc.1979.11321
[43]
Dietterich TG (2000) Ensemble methods in machine learning. Multiple Classifier Systems 1857: 1–15. doi: 10.1007/3-540-45014-9_1
[44]
Drucker H, Cortes C, Jackel LD, Lecun Y, Vapnik V (1994) Boosting and Other Ensemble Methods. Neural Computation 6: 1289–1301. doi: 10.1162/neco.1994.6.6.1289
[45]
Polikar R (2006) Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE 6: 21–45. doi: 10.1109/mcas.2006.1688199
[46]
Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11: 1058–1063. doi: 10.1038/nmeth.3098. pmid:25194848
[47]
Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2015) A major human white-matter pathway between dorsal and ventral visual cortex. Cereb Cortex: Epub ahead of print. doi: 10.1093/cercor/bhv064
[48]
Rokem A, Yeatman JD, Pestilli F, Kay KN, Mezer A, van der Walt S, et al. (2015) Evaluating the accuracy of diffusion MRI models in white matter. PLoS One 10: e0123272. doi: 10.1371/journal.pone.0123272. pmid:25879933
[49]
Caiafa CF, Pestilli F (2015) Sparse multiway decomposition for analysis and modeling of diffusion imaging and tractography. ArXiv: 1505.0710.
[50]
Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al. (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80: 62–79. doi: 10.1016/j.neuroimage.2013.05.041. pmid:23684880
[51]
Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67: 298–312. doi: 10.1016/j.neuroimage.2012.11.049. pmid:23238430
[52]
Smith RE, Tournier JD, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104: 253–265. doi: 10.1016/j.neuroimage.2014.10.004. pmid:25312774
[53]
Daducci A, Dal Palu A, Alia L, Thiran JP (2014) COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography. IEEE Trans Med Imaging 34: 246–257. doi: 10.1109/TMI.2014.2352414. pmid:25167548
[54]
Smith RE, Tournier JD, Calamante F, Connelly A (2015) SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119: 338–351. doi: 10.1016/j.neuroimage.2015.06.092. pmid:26163802
[55]
Schreiber J, Riffert T, Anwander A, Knosche TR (2014) Plausibility Tracking: a method to evaluate anatomical connectivity and microstructural properties along fiber pathways. Neuroimage 90: 163–178. doi: 10.1016/j.neuroimage.2014.01.002. pmid:24418503
[56]
Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. Neuroimage 54: 1262–1279. doi: 10.1016/j.neuroimage.2010.09.006. pmid:20850551
[57]
Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, Baare WFC, et al. (2007) Validation of in vitro probabilistic tractography. Neuroimage 37: 1267–1277. pmid:17706434 doi: 10.1016/j.neuroimage.2007.06.022
[58]
Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R, et al. (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37: 530–538. pmid:17604650 doi: 10.1016/j.neuroimage.2007.04.067
[59]
Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography. Journal of Neuroscience 33: 3190–3201. doi: 10.1523/JNEUROSCI.2457-12.2013. pmid:23407972
[60]
Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data. Cereb Cortex: Epub ahead of print. doi: 10.1093/cercor/bhv121
[61]
Lyon DC, Connolly JD (2012) The case for primate V3. Proc Biol Sci 279: 625–633. doi: 10.1098/rspb.2011.2048. pmid:22171081
[62]
Kennedy H, Knoblauch K, Toroczkai Z (2013) Why data coherence and quality is critical for understanding interareal cortical networks. Neuroimage 80: 37–45. doi: 10.1016/j.neuroimage.2013.04.031. pmid:23603347
[63]
Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, et al. (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56: 220–234. doi: 10.1016/j.neuroimage.2011.01.032. pmid:21256221
[64]
Cote MA, Girard G, Bore A, Garyfallidis E, Houde JC, Descoteaux M (2013) Tractometer: towards validation of tractography pipelines. Med Image Anal 17: 844–857. doi: 10.1016/j.media.2013.03.009. pmid:23706753
Neher PF, Laun FB, Stieltjes B, Maier-Hein KH (2014) Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn Reson Med 72: 1460–1470. doi: 10.1002/mrm.25045. pmid:24323973
[67]
Neher P, Houde JC, Caruyer E, Daducci A, Dyrby T, Maier-Hein K, et al. (2015) ISMRM 2015 Tractography challenge.
[68]
Close TG, Tournier JD, Calamante F, Johnston LA, Mareels I, Connelly A (2009) A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. Neuroimage 47: 1288–1300. doi: 10.1016/j.neuroimage.2009.03.077. pmid:19361565
[69]
Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62: 1924–1938. doi: 10.1016/j.neuroimage.2012.06.005. pmid:22705374
[70]
Mangin JF, Fillard P, Cointepas Y, Le Bihan D, Frouin V, Poupon C (2013) Toward global tractography. Neuroimage 80: 290–296. doi: 10.1016/j.neuroimage.2013.04.009. pmid:23587688
[71]
Sherbondy AJ, Dougherty RF, Napel S, Wandell BA (2008) Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 8: 12 11–11. doi: 10.1167/8.10.12
[72]
Benjamin CF, Singh JM, Prabhu SP, Warfield SK (2014) Optimization of tractography of the optic radiations. Hum Brain Mapp 35: 683–697. doi: 10.1002/hbm.22204. pmid:23225566
[73]
Ogawa S, Takemura H, Horiguchi H, Terao M, Haji T, Pestilli F, et al. (2014) White matter consequences of retinal receptor and ganglion cell damage. Invest Ophthalmol Vis Sci 55: 6976–6986. doi: 10.1167/iovs.14-14737. pmid:25257055
[74]
Allen B, Spiegel DP, Thompson B, Pestilli F, Rokers B (2015) Altered white matter in early visual pathways of human amblyopes. Vision Res 114: 48–55. doi: 10.1016/j.visres.2014.12.021. pmid:25615840
[75]
Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36: 630–644. pmid:17481925 doi: 10.1016/j.neuroimage.2007.02.049
[76]
Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7: e49790. doi: 10.1371/journal.pone.0049790. pmid:23166771
[77]
Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44: 1105–1132. doi: 10.1016/j.cortex.2008.05.004. pmid:18619589
[78]
Yendiki A, Panneck P, Srinivasan P, Stevens A, Z?llei L, Augustinack J, et al. (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5: 23. doi: 10.3389/fninf.2011.00023. pmid:22016733
[79]
Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126: 2093–2107. pmid:12821517 doi: 10.1093/brain/awg203
[80]
Oishi K, Huang H, Yoshioka T, Ying SH, Zee DS, Zilles K, et al. (2011) Superficially located white matter structures commonly seen in the human and the macaque brain with diffusion tensor imaging. Brain Connect 1: 37–47. doi: 10.1089/brain.2011.0005. pmid:22432953
[81]
Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342: 1238406. doi: 10.1126/science.1238406
[82]
Sporns O (2013) The human connectome: origins and challenges. Neuroimage 80: 53–61. doi: 10.1016/j.neuroimage.2013.03.023. pmid:23528922
[83]
Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49: 177–182. pmid:12509835 doi: 10.1002/mrm.10308
[84]
Friston KJ, Ashburner J (2004) Generative and recognition models for neuroanatomy. Neuroimage 23: 21–24. pmid:15325348 doi: 10.1016/j.neuroimage.2004.04.021
[85]
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80: 105–124. doi: 10.1016/j.neuroimage.2013.04.127. pmid:23668970
[86]
Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. (2013) Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80: 125–143. doi: 10.1016/j.neuroimage.2013.05.057. pmid:23702418
[87]
Fischl B (2012) FreeSurfer. Neuroimage 62: 774–781. doi: 10.1016/j.neuroimage.2012.01.021. pmid:22248573
[88]
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31: 1116–1128. pmid:16545965 doi: 10.1016/j.neuroimage.2006.01.015
[89]
Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35: 1459–1472. pmid:17379540 doi: 10.1016/j.neuroimage.2007.02.016
[90]
Kim D, Sra S, Dhillon S (2013) A non-monotonic method for large-scale non-negative least squares. Optimization Methods and Software 28: 1012–1039. doi: 10.1080/10556788.2012.656368
[91]
Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL (2008) Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Mapp 29: 142–156. pmid:17394212 doi: 10.1002/hbm.20379
[92]
Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39: 647–660. pmid:17977024 doi: 10.1016/j.neuroimage.2007.09.034
[93]
Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51: 718–737. doi: 10.1016/j.visres.2010.08.004. pmid:20692278