全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus

DOI: 10.1371/journal.pcbi.1004722

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.

References

[1]  De Martino B, Kumaran D, Seymour B, Dolan RJ. Frames, biases, and rational decision-making in the human brain. Science. 2006;313: 684–687. pmid:16888142 doi: 10.1126/science.1128356
[2]  Vuilleumier P, Schwartz S. Emotional facial expressions capture attention. Neurology. 2001;56: 153–158. pmid:11160948 doi: 10.1212/wnl.56.2.153
[3]  Suter RS, Pachur T, Hertwig R, Endestad T, Biele G. The neural basis of risky choice with affective outcomes. PLoS ONE. 2015;10. doi: 10.1371/journal.pone.0122475
[4]  Most SB, Chun MM, Widders DM, Zald DH. Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Pyschon Bull Rev. 2005;12: 654–661. doi: 10.3758/bf03196754
[5]  Zikopoulos B, Barbas H. Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. J Neurosci. 2012;32: 5338–5350. doi: 10.1523/JNEUROSCI.4793-11.2012. pmid:22496579
[6]  Pourtois G, Schettino A, Vuilleumier P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol Psychol. 2013;92: 492–512. doi: 10.1016/j.biopsycho.2012.02.007. pmid:22373657
[7]  Jasper H. Functional properties of the thalamic reticular system. In: Delafresnaye J, editor. Brain Mechanisms and Consciousness. C. C. Thomas, Springfield; 1954. pp. 374–401.
[8]  McAlonan K, Cavanaugh J, Wurtz RH. Attentional modulation of thalamic reticular neurons. J Neurosci. 2006;26: 4444–4450. pmid:16624964 doi: 10.1523/jneurosci.5602-05.2006
[9]  Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA. 1984;81: 4586–4590. pmid:6589612 doi: 10.1073/pnas.81.14.4586
[10]  Ross DT, Graham DI. Selective loss and selective sparing of neurons in the thalamic reticular nucleus following human cardiac arrest. J Cereb Blood Flow Metab. 1993;13: 558–567. pmid:8314911 doi: 10.1038/jcbfm.1993.73
[11]  Friedberg EB, Ross DT. Degeneration of rat thalamic reticular neurons following intrathalamic domoic acid injection. Neurosci Lett. 1993;151: 115–119. pmid:8469429 doi: 10.1016/0304-3940(93)90060-x
[12]  MacLean PD. Psychosomatic disease and the “visceral brain”: Recent developments bearing on the Papez theory of emotion. Psychosom Med. 1949;11: 338–353. pmid:15410445 doi: 10.1097/00006842-194911000-00003
[13]  LaLumiere RT. Optogenetic dissection of amygdala functioning. Front Behav Neurosci. 2014;8. doi: 10.3389/fnbeh.2014.00107. pmid:24723867
[14]  Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9: 148–158. doi: 10.1038/nrn2317. pmid:18209732
[15]  John YJ, Bullock D, Zikopoulos B, Barbas H. Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front Hum Neurosci. 2013;7. doi: 10.3389/fnhum.2013.00101. pmid:23565082
[16]  Ghashghaei H, Hilgetag C, Barbas H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage. 2007;34: 905–923. pmid:17126037 doi: 10.1016/j.neuroimage.2006.09.046
[17]  Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse. 2004;51: 32–58. pmid:14579424 doi: 10.1002/syn.10279
[18]  Garcia J, Lasiter PS, Bermudez-Rattoni F, Deems DA. A general theory of aversion learning. Ann N Acad Sci. 1985;443: 8–21. doi: 10.1111/j.1749-6632.1985.tb27060.x
[19]  LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990;10: 1062–1069. pmid:2329367
[20]  Fendt M. Injections of the NMDA receptor antagonist aminophosphonopentanoic acid into the lateral nucleus of the amygdala block the expression of fear-potentiated startle and freezing. J Neurosci. 2001;21: 4111–4115. pmid:11356899
[21]  Peinado-Manzano A. Intervention of the lateral and central amygdala on the association of visual stimuli with different magnitudes of reinforcement. Behav Brain Res. 1989;32: 289–295. pmid:2713081 doi: 10.1016/s0166-4328(89)80061-0
[22]  Hiroi N, White NM. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J Neurosci. 1991;11: 2107–2116. pmid:2066777
[23]  Balleine BW, Killcross S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci. 2006;29: 272–279. pmid:16545468 doi: 10.1016/j.tins.2006.03.002
[24]  Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439: 865–870. pmid:16482160 doi: 10.1038/nature04490
[25]  Peck CJ, Salzman CD. Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment. eLife. 2014;3: e04478. doi: 10.7554/elife.04478
[26]  Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci. 2006;26: 7348–7361. pmid:16837581 doi: 10.1523/jneurosci.5511-05.2006
[27]  Zikopoulos B, Barbas H. Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci. 2007;18: 417–438. pmid:18330211 doi: 10.1515/revneuro.2007.18.6.417
[28]  Timbie C, Barbas H. Pathways for Emotions: Specializations in the amygdalar, mediodorsal thalamic, and posterior orbitofrontal network. J Neurosci. 2015;35: 11976–11987. doi: 10.1523/JNEUROSCI.2157-15.2015. pmid:26311778
[29]  Timbie C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34: 8106–8118. doi: 10.1523/JNEUROSCI.5014-13.2014. pmid:24920616
[30]  Barbas H, Zikopoulos B, Timbie C. Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry. 2011;69: 1133–1139. doi: 10.1016/j.biopsych.2010.08.008. pmid:20889144
[31]  Barbas H. Flow of information for emotions through temporal and orbitofrontal pathways. J Anat. 2007;211: 237–249. pmid:17635630 doi: 10.1111/j.1469-7580.2007.00777.x
[32]  Yingling CD, Skinner JE. Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalogr Clin Neurophysiol. 1976;41: 476–482. pmid:61851 doi: 10.1016/0013-4694(76)90059-6
[33]  Shosaku A. Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus. J Neurophysiol. 1986;55: 1030–1043. pmid:3711965
[34]  Pinault D. The thalamic reticular nucleus: structure, function and concept. Brain Res Rev. 2004;46: 1–31. pmid:15297152 doi: 10.1016/j.brainresrev.2004.04.008
[35]  Willis AM, Slater BJ, Gribkova ED, Llano DA. Open-loop organization of thalamic reticular nucleus and dorsal thalamus: A computational model. J Neurophysiol. 2015;114: 2353–2367. doi: 10.1152/jn.00926.2014. pmid:26289472
[36]  Weddell R. Subcortical modulation of spatial attention including evidence that the Sprague effect extends to man. Brain Cogn. 2004;55: 497–506. pmid:15223196 doi: 10.1016/j.bandc.2004.02.075
[37]  McAlonan K, Brown VJ, Bowman EM. Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. J Neurosci. 2000;20: 8897–8901. pmid:11102499
[38]  Lee K, McCormick D. Modulation of spindle oscillations by acetylcholine, cholecystokinin and 1S, 3R-ACPD in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuroscience. 1997;77: 335–350. pmid:9472394 doi: 10.1016/s0306-4522(96)00481-2
[39]  Rowell P, Volk K, Li J, Bickford M. Investigations of the cholinergic modulation of GABA release in rat thalamus slices. Neuroscience. 2003;116: 447–453. pmid:12559099 doi: 10.1016/s0306-4522(02)00706-6
[40]  Parent M, Descarries L. Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol. 2008;511: 678–691. doi: 10.1002/cne.21868. pmid:18924144
[41]  Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol. 2014;592: 4137–4145. doi: 10.1113/jphysiol.2014.277376. pmid:24973413
[42]  Grossberg S. A neural model of attention, reinforcement and discrimination learning. Int Rev Neurobiol. 1975;18: 263–327. pmid:1107246 doi: 10.1016/s0074-7742(08)60037-9
[43]  Reynolds JH, Heeger DJ. The normalization model of attention. Neuron. 2009;61: 168–185. doi: 10.1016/j.neuron.2009.01.002. pmid:19186161
[44]  Constantinidis C, Franowicz MN, Goldman-Rakic PS. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci. 2001;4: 311–316. pmid:11224549 doi: 10.1038/85179
[45]  Hussar CR, Pasternak T. Flexibility of sensory representations in prefrontal cortex depends on cell type. Neuron. 2009;64: 730–743. doi: 10.1016/j.neuron.2009.11.018. pmid:20005828
[46]  Turner BH, Mishkin M, Knapp M. Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol. 1980;191: 515–543. pmid:7419732 doi: 10.1002/cne.901910402
[47]  Porrino L, Crane A, Goldman-Rakic P. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol. 1981;198: 121–136. pmid:6164704 doi: 10.1002/cne.901980111
[48]  Zikopoulos B, Hoistad M, Barbas H. Differential projections and synaptic interactions of posterior orbitofrontal and anterior cingulate cortices with the amygdala. Neurosci 2008 Abstr Wash DC Soc Neurosci. 2008;Vol 34.
[49]  Ghashghaei H, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience. 2002;115: 1261–1279. pmid:12453496 doi: 10.1016/s0306-4522(02)00446-3
[50]  Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3: 563–573. pmid:12094212 doi: 10.1038/nrn875
[51]  Lanuza E, Nader K, Ledoux J. Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience. 2004;125: 305–315. pmid:15062974 doi: 10.1016/j.neuroscience.2003.12.034
[52]  LeDoux JE, Farb C, Ruggiero DA. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci. 1990;10: 1043–1054. pmid:2158523
[53]  Paré D, Royer S, Smith Y, Lang EJ. Contextual inhibitory gating of impulse traffic in the intra-amygdaloid network. Ann N Acad Sci. 2003;985: 78–91. doi: 10.1111/j.1749-6632.2003.tb07073.x
[54]  Fellows LK, Farah MJ. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cereb Cortex. 2007;17: 2669–2674. pmid:17259643 doi: 10.1093/cercor/bhl176
[55]  Damasio H. Human neuroanatomy relevant to decision-making. Neurobiology of Decision-making. Springer; 1996. pp. 1–12.
[56]  Bechara A. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn. 2004;55: 30–40. pmid:15134841 doi: 10.1016/j.bandc.2003.04.001
[57]  Sander D, Grafman J, Zalla T. The human amygdala: an evolved system for relevance detection. Rev Neurosci. 2003;14: 303–316. pmid:14640318 doi: 10.1515/revneuro.2003.14.4.303
[58]  Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw Publ IEEE Neural Netw Counc. 2003;14: 1569–1572. doi: 10.1109/tnn.2003.820440
[59]  Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. Econom J Econom Soc. 1979; 263–291. doi: 10.2307/1914185
[60]  De Martino B, Harrison NA, Knafo S, Bird G, Dolan RJ. Explaining enhanced logical consistency during decision making in autism. J Neurosci. 2008;28: 10746–10750. doi: 10.1523/JNEUROSCI.2895-08.2008. pmid:18923049
[61]  Gigerenzer G, Todd PM. Fast and frugal heuristics: The adaptive toolbox. Simple heuristics that make us smart. Oxford University Press; 1999. pp. 3–34.
[62]  Damasio AR. Descartes’ Error: Emotion, rationality and the human brain. N Y Putnam. 1994;352. doi: 10.1177/00030651970450030301
[63]  Petrides M. The orbitofrontal cortex: novelty, deviation from expectation, and memory. Ann N Acad Sci. 2007;1121: 33–53. doi: 10.1196/annals.1401.035
[64]  Rushworth MF, Behrens TE. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci. 2008;11: 389–397. doi: 10.1038/nn2066. pmid:18368045
[65]  Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol. 2013;23: 229–238. doi: 10.1016/j.conb.2012.11.012. pmid:23267662
[66]  Glausier JR, Khan ZU, Muly EC. Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex N Y N 1991. 2009;19: 1820–1834. doi: 10.1093/cercor/bhn212
[67]  Gruber AJ, Calhoon GG, Shusterman I, Schoenbaum G, Roesch MR, O’Donnell P. More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci. 2010;30: 17102–17110. doi: 10.1523/JNEUROSCI.4623-10.2010. pmid:21159980
[68]  Gallagher M, Holland PC. The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA. 1994;91: 11771–11776. pmid:7991534 doi: 10.1073/pnas.91.25.11771
[69]  Sarter M, Parikh V, Howe WM. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci. 2009;10: 383–390. doi: 10.1038/nrn2635. pmid:19377503
[70]  Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, et al. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex N Y N 1991. 2015;25: 118–137. doi: 10.1093/cercor/bht210
[71]  Ghashghaei HT, Barbas H. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience. 2001;103: 593–614. pmid:11274781 doi: 10.1016/s0306-4522(00)00585-6
[72]  Mesulam MM, Rosen AD, Mufson EJ. Regional variations in cortical cholinergic innervation: chemoarchitectonics of acetylcholinesterase-containing fibers in the macaque brain. Brain Res. 1984;311: 245–258. pmid:6498483 doi: 10.1016/0006-8993(84)90087-8
[73]  Mesulam MM, Volicer L, Marquis JK, Mufson EJ, Green RC. Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann Neurol. 1986;19: 144–151. pmid:3963756 doi: 10.1002/ana.410190206
[74]  Baxter MG, Chiba AA. Cognitive functions of the basal forebrain. Curr Opin Neurobiol. 1999;9: 178–183. pmid:10322180 doi: 10.1016/s0959-4388(99)80024-5
[75]  Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36: 52–73. doi: 10.1038/npp.2010.104. pmid:20668433
[76]  Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res. 2011;221: 430–442. doi: 10.1016/j.bbr.2010.11.033. pmid:21108972
[77]  Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: how the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther. 2009;122: 302–311. doi: 10.1016/j.pharmthera.2009.03.009. pmid:19351547
[78]  Pekkonen E, J??skel?inen IP, Kaakkola S, Ahveninen J. Cholinergic modulation of preattentive auditory processing in aging. NeuroImage. 2005;27: 387–392. pmid:15921933 doi: 10.1016/j.neuroimage.2005.04.018
[79]  Klinkenberg I, Blokland A, Riedel WJ, Sambeth A. Cholinergic modulation of auditory processing, sensory gating and novelty detection in human participants. Psychopharmacol Berl. 2013;225: 903–921. doi: 10.1007/s00213-012-2872-0
[80]  Peck CJ, Salzman CD. The amygdala and basal forebrain as a pathway for motivationally guided attention. J Neurosci. 2014;34: 13757–13767. doi: 10.1523/JNEUROSCI.2106-14.2014. pmid:25297102
[81]  Unal CT, Pare D, Zaborszky L. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons. J Neurosci. 2015;35: 853–863. doi: 10.1523/JNEUROSCI.2706-14.2015. pmid:25589777
[82]  ?hman A, Flykt A, Esteves F. Emotion drives attention: detecting the snake in the grass. J Exp Psychol Gen. 2001;130: 466. pmid:11561921 doi: 10.1037/0096-3445.130.3.466
[83]  Goossens L, Sunaert S, Peeters R, Griez EJ, Schruers KR. Amygdala hyperfunction in phobic fear normalizes after exposure. Biol Psychiatry. 2007;62: 1119–1125. pmid:17706612 doi: 10.1016/j.biopsych.2007.04.024
[84]  Begeer S, Rieffe C, Terwogt MM, Stockmann L. Attention to facial emotion expressions in children with autism. Autism. 2006;10: 37–51. pmid:16522709 doi: 10.1177/1362361306057862
[85]  Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15: 225–230. pmid:15831407 doi: 10.1016/j.conb.2005.03.001
[86]  Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci. 2013;7: 609. doi: 10.3389/fnhum.2013.00609. pmid:24098278
[87]  Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci. 2010;30: 14595–14609. doi: 10.1523/JNEUROSCI.2257-10.2010. pmid:21048117
[88]  Arnsten A. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiat. 2005;67: 7–12.
[89]  Brown JW, Bullock D, Grossberg S. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw Off J Int Neural Netw Soc. 2004;17: 471–510. doi: 10.1016/j.neunet.2003.08.006
[90]  Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex N Y N 1991. 2007;17: 2443–2452. doi: 10.1093/cercor/bhl152
[91]  Palma J, Grossberg S, Versace M. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Front Comput Neurosci. 2012;6: 42. doi: 10.3389/fncom.2012.00042. pmid:22754524

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413