全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

DOI: 10.1371/journal.pcbi.1004685

Full-Text   Cite this paper   Add to My Lib

Abstract:

Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined.

References

[1]  Bacchus W, Aubel D, Fussenegger M (2013) Biomedically relevant circuit-design strategies in mammalian synthetic biology. Mol Syst Biol 9: 691. doi: 10.1038/msb.2013.48. pmid:24061539
[2]  Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39: 515–537. doi: 10.1146/annurev.biophys.050708.133652. pmid:20192780
[3]  Weber W, Fussenegger M (2011) Emerging biomedical applications of synthetic biology. Nature Reviews Genetics 13: 21–35. doi: 10.1038/nrg3094. pmid:22124480
[4]  Bray D (1995) Protein molecules as computational elements in living cells. Nature 376: 307–312. pmid:7630396 doi: 10.1038/376307a0
[5]  Amos Martyn (2004) Cellular Computing. Oxford University Press, USA.
[6]  Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491: 249–253. doi: 10.1038/nature11516. pmid:23041931
[7]  Slusarczyk AL, Lin A, Weiss R (2012) Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet 13: 406–420. doi: 10.1038/nrg3227. pmid:22596318
[8]  Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17: 548–557. pmid:16978856 doi: 10.1016/j.copbio.2006.09.001
[9]  Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342. pmid:10659857 doi: 10.1038/35002131
[10]  Dari A, Kia B, Wang X, Bulsara AR, Ditto W (2011) Noise-aided computation within a synthetic gene network through morphable and robust logic gates. Phys Rev E Stat Nonlin Soft Matter Phys 83: 041909. pmid:21599203 doi: 10.1103/physreve.83.041909
[11]  Kramer BP, Fischer C, Fussenegger M (2004) BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng 87: 478–484. pmid:15286985 doi: 10.1002/bit.20142
[12]  Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25: 795–801. pmid:17515909 doi: 10.1038/nbt1307
[13]  Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338. pmid:10659856 doi: 10.1038/35002125
[14]  Greber D, Fussenegger M (2010) An engineered mammalian band-pass network. Nucleic Acids Res 38: e174. doi: 10.1093/nar/gkq671. pmid:20693530
[15]  Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333: 1307–1311. doi: 10.1126/science.1205527. pmid:21885784
[16]  Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340: 599–603. doi: 10.1126/science.1232758. pmid:23539178
[17]  Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13: 455–468. doi: 10.1038/nrg3197. pmid:22688678
[18]  Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10: 410–422. doi: 10.1038/nrm2698. pmid:19461664
[19]  Kwok R (2010) Five hard truths for synthetic biology. Nature 463: 288–290. doi: 10.1038/463288a. pmid:20090726
[20]  Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39: 103–129. pmid:4741704 doi: 10.1016/0022-5193(73)90208-7
[21]  Kauffman S (1974) The large scale structure and dynamics of gene control circuits: an ensemble approach. J Theor Biol 44: 167–190. pmid:4595774 doi: 10.1016/s0022-5193(74)80037-8
[22]  McAdams HH, Shapiro L (1995) Circuit simulation of genetic networks. Science 269: 650–656. pmid:7624793 doi: 10.1126/science.7624793
[23]  McAdams HH, Arkin A (2000) Towards a circuit engineering discipline. Curr Biol 10: R318–R320. pmid:10801411 doi: 10.1016/s0960-9822(00)00440-1
[24]  Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420: 224–230. pmid:12432407 doi: 10.1038/nature01257
[25]  Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296: 1466–1470. pmid:12029133 doi: 10.1126/science.1067407
[26]  Rollié S, Mangold M, Sundmacher K (2012) Designing biological systems: systems engineering meets synthetic biology. Chemical Engineering Science 69: 1–29. doi: 10.1016/j.ces.2011.10.068
[27]  Macia J, Posas F, Sole RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30: 342–349. doi: 10.1016/j.tibtech.2012.03.006. pmid:22516742
[28]  Vilanova C, Porcar M (2014) iGEM 2.0—refoundations for engineering biology. Nat Biotechnol 32: 420–424. doi: 10.1038/nbt.2899. pmid:24811510
[29]  Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26: 483–489. doi: 10.1016/j.tibtech.2008.05.004. pmid:18675483
[30]  Chuang JS (2012) Engineering multicellular traits in synthetic microbial populations. Curr Opin Chem Biol 16: 370–378. doi: 10.1016/j.cbpa.2012.04.002. pmid:22591687
[31]  Regot S, Macia J, Conde N, Furukawa K, Kjellen J, Peeters T, Hohmann S, de Nadal E, Posas F, Sole R (2011) Distributed biological computation with multicellular engineered networks. Nature 469: 207–211. doi: 10.1038/nature09679. pmid:21150900
[32]  Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature 469: 212–215. doi: 10.1038/nature09565. pmid:21150903
[33]  Kholodenko BN (2009) Spatially distributed cell signalling. FEBS letters 583: 4006–4012. doi: 10.1016/j.febslet.2009.09.045. pmid:19800332
[34]  Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr, Nagpal R, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Communications of the ACM 43: 74–82. doi: 10.1145/332833.332842
[35]  Kinkhabwala A, Bastiaens PI (2010) Spatial aspects of intracellular information processing. Curr Opin Genet Dev 20: 31–40. doi: 10.1016/j.gde.2009.12.006. pmid:20096560
[36]  Haken, Hermann (1979) Pattern formation and pattern recognitionG??an attempt at a synthesis. Springer.
[37]  Haken, Hermann (2004) Synergetics: Introduction and advanced topics. Springer.
[38]  Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434: 1130–1134. pmid:15858574 doi: 10.1038/nature03461
[39]  Solé RV, Delgado J (1996) Universal computation in fluid neural networks. Complexity 2: 49–56. doi: 10.1002/(sici)1099-0526(199611/12)2:2<49::aid-cplx13>3.0.co;2-t
[40]  Bonabeau E, Sobkowski A, Theraulaz G, Deneubourg JL (1997) Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects. BCEC 36–45.
[41]  Enderton, Herbert and Enderton, Herbert B. (2001) A mathematical introduction to logic. Access Online via Elsevier.
[42]  Karnaugh M (1953) The map method for synthesis of combinational logic circuits. American Institute of Electrical Engineers, Part I: Communication and Electronics, Transactions of the 72: 593–599.
[43]  McCluskey, Edward J. (1965) Introduction to the theory of switching circuits. McGraw-Hill New York.
[44]  Bender, Edward A. and Williamson, S Gill (2012) A short course in discrete mathematics. DoverPublications. com.
[45]  Grilly C, Stricker J, Pang WL, Bennett MR, Hasty J (2007) A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol Syst Biol 3: 127. pmid:17667949 doi: 10.1038/msb4100168
[46]  Gaber R, Lebar T, Majerle A, Ster B, Dobnikar A, Bencina M, Jerala R (2014) Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat Chem Biol 10: 203–208. doi: 10.1038/nchembio.1433. pmid:24413461
[47]  Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137: 1272–1281. doi: 10.1016/j.cell.2009.04.048. pmid:19563759
[48]  Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27: 465–471. doi: 10.1038/nbt.1536. pmid:19377462
[49]  Asthana A, Lee KH, Kim KO, Kim DM, Kim DP (2012) Rapid and cost-effective fabrication of selectively permeable calcium-alginate microfluidic device using modified embedded template method. Biomicrofluidics 6: 012821. doi: 10.1063/1.3672189
[50]  Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nature materials 6: 908–915. pmid:17906630 doi: 10.1038/nmat2022
[51]  Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298: 580–584. pmid:12351675 doi: 10.1126/science.1076996
[52]  Luo D, Pullela SR, Marquez M, Cheng Z (2007) Cell encapsules with tunable transport and mechanical properties. Biomicrofluidics 1: 034102. doi: 10.1063/1.2757156
[53]  Williams JC, Holecko MM II, Massia SP, Rousche P, Kipke DR (2005) Multi-site incorporation of bioactive matrices into MEMS-based neural probes. Journal of neural engineering 2: L23. pmid:16317225 doi: 10.1088/1741-2560/2/4/l03
[54]  Ricoult SG, Goldman JS, Stellwagen D, Juncker D, Kennedy TE (2012) Generation of microisland cultures using microcontact printing to pattern protein substrates. Journal of neuroscience methods 208: 10–17. doi: 10.1016/j.jneumeth.2012.04.016. pmid:22561087
[55]  Feng XJ, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H (2004) Optimizing genetic circuits by global sensitivity analysis. Biophys J 87: 2195–2202. pmid:15454422 doi: 10.1529/biophysj.104.044131
[56]  Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, Mehreja R, Netravali I (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. Natural Computing 2: 47–84.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413