全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Yeast as a Heterologous Model System to Uncover Type III Effector Function

DOI: 10.1371/journal.ppat.1005360

Full-Text   Cite this paper   Add to My Lib

Abstract:

Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications.

References

[1]  Galan JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68: 415–438. doi: 10.1146/annurev-micro-092412-155725. pmid:25002086
[2]  Macho AP (2015) Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol: doi: 10.1111/nph.13605.
[3]  Cui JX, Shao F (2011) Biochemistry and cell signaling taught by bacterial effectors. Trends in Biochemical Sciences 36: 532–540. doi: 10.1016/j.tibs.2011.07.003. pmid:21920760
[4]  Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35: 1100–1125. doi: 10.1111/j.1574-6976.2011.00271.x. pmid:21517912
[5]  Kenny B, Valdivia R (2009) Host-microbe interactions: bacteria. Curr Opin Microbiol 12: 1–3. doi: 10.1016/j.mib.2009.01.002. pmid:19174324
[6]  Coll NS, Valls M (2013) Current knowledge on the Ralstonia solanacearum type III secretion system. Microb Biotechnol 6: 614–620. doi: 10.1111/1751-7915.12056. pmid:23617636
[7]  Degrave A, Siamer S, Boureau T, Barny MA (2015) The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. Mol Plant Pathol 16 (8): 899–905. doi: 10.1111/mpp.12237. pmid:25640649
[8]  Orchard RC, Alto NM (2012) Mimicking GEFs: a common theme for bacterial pathogens. Cell Microbiol 14: 10–18. doi: 10.1111/j.1462-5822.2011.01703.x. pmid:21951829
[9]  Sole M, Popa C, Mith O, Sohn KH, Jones JD, et al. (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant Microbe Interact 25: 941–953. doi: 10.1094/MPMI-12-11-0321. pmid:22414437
[10]  Cunnac S, Occhialini A, Barberis P, Boucher C, Genin S (2004) Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53: 115–128. pmid:15225308 doi: 10.1111/j.1365-2958.2004.04118.x
[11]  Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60: 425–449. pmid:16753033 doi: 10.1146/annurev.micro.60.080805.142251
[12]  Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB, et al. (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5: e1000388. doi: 10.1371/journal.ppat.1000388. pmid:19381254
[13]  Sato H, Frank DW (2004) ExoU is a potent intracellular phospholipase. Mol Microbiol 53: 1279–1290. pmid:15387809 doi: 10.1111/j.1365-2958.2004.04194.x
[14]  Munkvold KR, Martin ME, Bronstein PA, Collmer A (2008) A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. Mol Plant Microbe Interact 21: 490–502. doi: 10.1094/MPMI-21-4-0490. pmid:18321194
[15]  Salomon D, Dar D, Sreeramulu S, Sessa G (2011) Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe Interact 24: 305–314. doi: 10.1094/MPMI-09-10-0196. pmid:21062109
[16]  Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197: 33–48. doi: 10.1534/genetics.114.163188. pmid:24807111
[17]  Curak J, Rohde J, Stagljar I (2009) Yeast as a tool to study bacterial effectors. Curr Opin Microbiol 12: 18–23. doi: 10.1016/j.mib.2008.11.004. pmid:19150254
[18]  Suter B, Auerbach D, Stagljar I (2006) Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 40: 625–644. pmid:16708762 doi: 10.2144/000112151
[19]  Chong YT, Koh JL, Friesen H, Duffy K, Cox MJ, et al. (2015) Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis. Cell 161: 1413–1424. doi: 10.1016/j.cell.2015.04.051. pmid:26046442
[20]  Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197: 451–465. doi: 10.1534/genetics.114.161620. pmid:24939991
[21]  Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, et al. (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19: 2816–2826. pmid:16322557 doi: 10.1101/gad.1362105
[22]  Sopko R, Huang D, Preston N, Chua G, Papp B, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21: 319–330. pmid:16455487 doi: 10.1016/j.molcel.2005.12.011
[23]  Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, et al. (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26: 283–289. pmid:11062466 doi: 10.1038/81576
[24]  Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368. pmid:11743205 doi: 10.1126/science.1065810
[25]  Siggers KA, Lesser CF (2008) The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 4: 8–15. doi: 10.1016/j.chom.2008.06.004. pmid:18621006
[26]  Koh JL, Chong YT, Friesen H, Moses A, Boone C, et al. (2015) CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae. G3 (Bethesda) 5: 1223–1232. doi: 10.1534/g3.115.017830
[27]  Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18: 1247–1256. doi: 10.1038/cdd.2011.37. pmid:21475301
[28]  Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627. pmid:10688190 doi: 10.1038/35001009
[29]  Alto NM, Shao F, Lazar CS, Brost RL, Chua G, et al. (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124: 133–145. pmid:16413487 doi: 10.1016/j.cell.2005.10.031
[30]  Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109: 575–588. pmid:12062101 doi: 10.1016/s0092-8674(02)00766-3
[31]  Belli G, Gari E, Piedrafita L, Aldea M, Herrero E (1998) An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26: 942–947. pmid:9461451 doi: 10.1093/nar/26.4.942
[32]  Rabin SD, Hauser AR (2003) Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71: 4144–4150. pmid:12819106 doi: 10.1128/iai.71.7.4144-4150.2003
[33]  Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, et al. (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36: 737–748. pmid:10844661 doi: 10.1046/j.1365-2958.2000.01898.x
[34]  Arnoldo A, Curak J, Kittanakom S, Chevelev I, Lee VT, et al. (2008) Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 4: e1000005. doi: 10.1371/journal.pgen.1000005. pmid:18454192
[35]  Siamer S, Guillas I, Shimobayashi M, Kunz C, Hall MN, et al. (2014) Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest. J Biol Chem 289: 18466–18477. doi: 10.1074/jbc.M114.562769. pmid:24828506
[36]  Stirling FR, Evans TJ (2006) Effects of the type III secreted pseudomonal toxin ExoS in the yeast Saccharomyces cerevisiae. Microbiology 152: 2273–2285. pmid:16849794 doi: 10.1099/mic.0.28831-0
[37]  Fujiwara S, Kawazoe T, Ohnishi K, Kitagawa T, Popa C, Valls M, et al. (2016) RipAY, a plant pathogen effector protein exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J Biol Chem. 2016 Jan 28. pii: jbc.M115.678953. [Epub ahead of print] doi: 10.1074/jbc.m115.678953
[38]  Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, et al. (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97: 575–586. pmid:10367887 doi: 10.1016/s0092-8674(00)80769-2
[39]  Slagowski NL, Kramer RW, Morrison MF, LaBaer J, Lesser CF (2008) A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog 4: e9. doi: 10.1371/journal.ppat.0040009. pmid:18208325
[40]  Salomon D, Bosis E, Dar D, Nachman I, Sessa G (2012) Expression of Pseudomonas syringae type III effectors in yeast under stress conditions reveals that HopX1 attenuates activation of the high osmolarity glycerol MAP kinase pathway. Microbiology 158: 2859–2869. doi: 10.1099/mic.0.062513-0. pmid:22977090
[41]  Lesser CF, Miller SI (2001) Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. Embo J 20: 1840–1849. pmid:11296218 doi: 10.1093/emboj/20.8.1840
[42]  Huang J, Lesser CF, Lory S (2008) The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456: 112–115. doi: 10.1038/nature07355. pmid:18830244
[43]  Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425: 686–691. pmid:14562095 doi: 10.1038/nature02026
[44]  Styles E, Youn JY, Mattiazzi Usaj M, Andrews B (2013) Functional genomics in the study of yeast cell polarity: moving in the right direction. Philos Trans R Soc Lond B Biol Sci 368: 20130118. doi: 10.1098/rstb.2013.0118. pmid:24062589
[45]  Rodriguez-Escudero I, Hardwidge PR, Nombela C, Cid VJ, Finlay BB, et al. (2005) Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae. Microbiology 151: 2933–2945. pmid:16151205 doi: 10.1099/mic.0.28072-0
[46]  Sisko JL, Spaeth K, Kumar Y, Valdivia RH (2006) Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol Microbiol 60: 51–66. pmid:16556220 doi: 10.1111/j.1365-2958.2006.05074.x
[47]  Martin H, Rodriguez-Pachon JM, Ruiz C, Nombela C, Molina M (2000) Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275: 1511–1519. pmid:10625705 doi: 10.1074/jbc.275.2.1511
[48]  Alam A, Miller KA, Chaand M, Butler JS, Dziejman M (2011) Identification of Vibrio cholerae type III secretion system effector proteins. Infect Immun 79: 1728–1740. doi: 10.1128/IAI.01194-10. pmid:21282418
[49]  Bosis E, Salomon D, Sessa G (2011) A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS ONE 6: e27698. doi: 10.1371/journal.pone.0027698. pmid:22110728
[50]  Siamer S, Patrit O, Fagard M, Belgareh-Touze N, Barny MA (2011) Expressing the Erwinia amylovora type III effector DspA/E in the yeast Saccharomyces cerevisiae strongly alters cellular trafficking. FEBS Open Bio 1: 23–28. doi: 10.1016/j.fob.2011.11.001. pmid:23650572
[51]  Tabuchi M, Kawai Y, Nishie-Fujita M, Akada R, Izumi T, et al. (2009) Development of a novel functional high-throughput screening system for pathogen effectors in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73: 2261–2267. pmid:19809180 doi: 10.1271/bbb.90360
[52]  Kramer RW, Slagowski NL, Eze NA, Giddings KS, Morrison MF, et al. (2007) Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog 3: e21. pmid:17305427 doi: 10.1371/journal.ppat.0030021
[53]  Fernandez-Pinar P, Aleman A, Sondek J, Dohlman HG, Molina M, et al. (2012) The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae. Mol Biol Cell 23: 4430–4443. doi: 10.1091/mbc.E12-03-0243. pmid:23015760
[54]  Burnaevskiy N, Fox TG, Plymire DA, Ertelt JM, Weigele BA, et al. (2013) Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature 496: 106–109. doi: 10.1038/nature12004. pmid:23535599
[55]  Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The genetic landscape of a cell. Science 327: 425–431. doi: 10.1126/science.1180823. pmid:20093466
[56]  Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, et al. (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7: 1017–1024. doi: 10.1038/nmeth.1534. pmid:21076421
[57]  Ye P, Peyser BD, Pan X, Boeke JD, Spencer FA, et al. (2005) Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 1: 2005 0026. doi: 10.1038/msb4100034
[58]  Hardwidge PR, Donohoe S, Aebersold R, Finlay BB (2006) Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics 6: 2174–2179. pmid:16552782 doi: 10.1002/pmic.200500523
[59]  Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257. pmid:11102521 doi: 10.1091/mbc.11.12.4241
[60]  Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, et al. (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280: 437–447. pmid:15496405 doi: 10.1074/jbc.m410573200
[61]  Aleman A, Fernandez-Pinar P, Perez-Nunez D, Rotger R, Martin H, et al. (2009) A yeast-based genetic screen for identification of pathogenic Salmonella proteins. FEMS Microbiol Lett 296: 167–177. doi: 10.1111/j.1574-6968.2009.01630.x. pmid:19459960
[62]  Yoon S, Liu Z, Eyobo Y, Orth K (2003) Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism. J Biol Chem 278: 2131–2135. pmid:12433923 doi: 10.1074/jbc.m209905200
[63]  Nejedlik L, Pierfelice T, Geiser JR (2004) Actin distribution is disrupted upon expression of Yersinia YopO/YpkA in yeast. Yeast 21: 759–768. pmid:15282799 doi: 10.1002/yea.1135
[64]  Garrity-Ryan L, Shafikhani S, Balachandran P, Nguyen L, Oza J, et al. (2004) The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 72: 546–558. pmid:14688136 doi: 10.1128/iai.72.1.546-558.2004
[65]  Witowski SE, Walker KA, Miller VL (2008) YspM, a newly identified Ysa type III secreted protein of Yersinia enterocolitica. J Bacteriol 190: 7315–7325. doi: 10.1128/JB.00861-08. pmid:18805975
[66]  Skrzypek E, Myers-Morales T, Whiteheart SW, Straley SC (2003) Application of a Saccharomyces cerevisiae model to study requirements for trafficking of Yersinia pestis YopM in eucaryotic cells. Infect Immun 71: 937–947. pmid:12540576 doi: 10.1128/iai.71.2.937-947.2003
[67]  Benabdillah R, Mota LJ, Lutzelschwab S, Demoinet E, Cornelis GR (2004) Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb Pathog 36: 247–261. pmid:15043860 doi: 10.1016/j.micpath.2003.12.006
[68]  Rodriguez-Pachon JM, Martin H, North G, Rotger R, Nombela C, et al. (2002) A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem 277: 27094–27102. pmid:12016210 doi: 10.1074/jbc.m201527200
[69]  Aleman A, Rodriguez-Escudero I, Mallo GV, Cid VJ, Molina M, et al. (2005) The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells. Cell Microbiol 7: 1432–1446. pmid:16153243 doi: 10.1111/j.1462-5822.2005.00568.x
[70]  Rodriguez-Escudero I, Rotger R, Cid VJ, Molina M (2006) Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium. Microbiology 152: 3437–3452. pmid:17074912 doi: 10.1099/mic.0.29186-0
[71]  Rodriguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M (2011) Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 80: 1220–1240. doi: 10.1111/j.1365-2958.2011.07639.x. pmid:21435037
[72]  Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DD, et al. (2013) The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog 9: e1003518. doi: 10.1371/journal.ppat.1003518. pmid:23935490
[73]  Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, et al. (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22: 2959–2969. pmid:12805211 doi: 10.1093/emboj/cdg290
[74]  Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, et al. (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279: 51953–51957. pmid:15459200 doi: 10.1074/jbc.m407001200
[75]  Hardwidge PR, Deng W, Vallance BA, Rodriguez-Escudero I, Cid VJ, et al. (2005) Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Infect Immun 73: 2586–2594. pmid:15845460 doi: 10.1128/iai.73.5.2586-2594.2005
[76]  Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1: 77–83. pmid:18005683 doi: 10.1016/j.chom.2007.02.002
[77]  Abramovitch RB, Kim YJ, Chen S, Dickman MB, Martin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 22: 60–69. pmid:12505984 doi: 10.1093/emboj/cdg006
[78]  Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen S, et al. (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37: 554–565. pmid:14756767 doi: 10.1046/j.1365-313x.2003.01982.x
[79]  Munkvold KR, Russell AB, Kvitko BH, Collmer A (2009) Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato. Mol Plant Microbe Interact 22: 1341–1355. doi: 10.1094/MPMI-22-11-1341. pmid:19810804
[80]  Ham JH, Majerczak D, Ewert S, Sreerekha MV, Mackey D, et al. (2008) WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non-host plants. Mol Plant Pathol 9: 633–643. doi: 10.1111/j.1364-3703.2008.00489.x. pmid:19018993
[81]  Jelenska J, Kang Y, Greenberg JT (2014) Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture 4: 149–153. doi: 10.4161/19490992.2014.980662. pmid:25551177
[82]  de Souza Santos M, Orth K (2015) Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 17: 164–173. doi: 10.1111/cmi.12399. pmid:25440316
[83]  Duro E, Marston AL (2015) From equator to pole: splitting chromosomes in mitosis and meiosis. Genes Dev 29: 109–122. doi: 10.1101/gad.255554.114. pmid:25593304
[84]  Shafikhani SH, Engel J (2006) Pseudomonas aeruginosa type III-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps. Proc Natl Acad Sci U S A 103: 15605–15610. pmid:17030800 doi: 10.1073/pnas.0605949103
[85]  Na HN, Yoo YH, Yoon CN, Lee JS (2015) Unbiased Proteomic Profiling Strategy for Discovery of Bacterial Effector Proteins Reveals that Salmonella Protein PheA Is a Host Cell Cycle Regulator. Chem Biol 22: 453–459. doi: 10.1016/j.chembiol.2015.03.008. pmid:25865312
[86]  Hardwidge PR, Rodriguez-Escudero I, Goode D, Donohoe S, Eng J, et al. (2004) Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem 279: 20127–20136. pmid:14988394 doi: 10.1074/jbc.m401228200
[87]  Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319: 2329–2336. doi: 10.1016/j.yexcr.2013.04.021. pmid:23648569
[88]  Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5: 522. doi: 10.3389/fpls.2014.00522. pmid:25352853
[89]  Popoff MR (2014) Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 5: e28209. doi: 10.4161/sgtp.28209. pmid:25203748
[90]  Croise P, Estay-Ahumada C, Gasman S, Ory S (2014) Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 5: e29469. doi: 10.4161/sgtp.29469. pmid:24914539
[91]  Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9: 846–859. doi: 10.1038/nrm2521. pmid:18946474
[92]  Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, et al. (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16: 853–860. doi: 10.1038/nsmb.1647. pmid:19620963
[93]  Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, et al. (2009) Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe Interact 22: 703–712. doi: 10.1094/MPMI-22-6-0703. pmid:19445595
[94]  Zhou D, Galan J (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3: 1293–1298. pmid:11755417 doi: 10.1016/s1286-4579(01)01489-7
[95]  Ly KT, Casanova JE (2007) Mechanisms of Salmonella entry into host cells. Cell Microbiol 9: 2103–2111. pmid:17593246 doi: 10.1111/j.1462-5822.2007.00992.x
[96]  Van Engelenburg SB, Palmer AE (2008) Quantification of real-time Salmonella effector type III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem Biol 15: 619–628. doi: 10.1016/j.chembiol.2008.04.014. pmid:18559272
[97]  Goicoechea SM, Awadia S, Garcia-Mata R (2014) I'm coming to GEF you: Regulation of RhoGEFs during cell migration. Cell Adh Migr 8: 535–549. doi: 10.4161/cam.28721. pmid:25482524
[98]  Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269. pmid:16212495 doi: 10.1146/annurev.cellbio.21.020604.150721
[99]  Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773: 1311–1340. pmid:17604854 doi: 10.1016/j.bbamcr.2007.05.003
[100]  Saito H (2010) Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol 13: 677–683. doi: 10.1016/j.mib.2010.09.001. pmid:20880736
[101]  Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL (2007) The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol Plant Microbe Interact 20: 346–357. pmid:17427805 doi: 10.1094/mpmi-20-4-0346
[102]  Teper D, Sukumaran S, Martin GB, Sessa G (2015) Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal Behav: doi: 10.1111/mpp.12288.
[103]  Lopez-Solanilla E, Bronstein PA, Schneider AR, Collmer A (2004) HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol Microbiol 54: 353–365. pmid:15469508 doi: 10.1111/j.1365-2958.2004.04285.x
[104]  Espinosa A, Guo M, Tam VC, Fu ZQ, Alfano JR (2003) The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol 49: 377–387. pmid:12828636 doi: 10.1046/j.1365-2958.2003.03588.x
[105]  Bretz JR, Mock NM, Charity JC, Zeyad S, Baker CJ, et al. (2003) A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection. Mol Microbiol 49: 389–400. pmid:12828637 doi: 10.1046/j.1365-2958.2003.03616.x
[106]  Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V, Isberg RR (2014) Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol 30: 79–109. doi: 10.1146/annurev-cellbio-100913-013439. pmid:25103867
[107]  Hauser AR, Kang PJ, Engel JN (1998) PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27: 807–818. pmid:9515706 doi: 10.1046/j.1365-2958.1998.00727.x
[108]  Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, et al. (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150: 1029–1041. doi: 10.1016/j.cell.2012.06.050. pmid:22939626
[109]  Selyunin AS, Sutton SE, Weigele BA, Reddick LE, Orchard RC, et al. (2011) The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature 469: 107–111. doi: 10.1038/nature09593. pmid:21170023
[110]  Simon NC, Barbieri JT (2014) Exoenzyme S ADP-ribosylates Rab5 effector sites to uncouple intracellular trafficking. Infect Immun 82: 21–28. doi: 10.1128/IAI.01059-13. pmid:24101692
[111]  Sato H, Feix JB, Frank DW (2006) Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry 45: 10368–10375. pmid:16922513 doi: 10.1021/bi060788j
[112]  Anderson DM, Schmalzer KM, Sato H, Casey M, Terhune SS, et al. (2011) Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol 82: 1454–1467. doi: 10.1111/j.1365-2958.2011.07904.x. pmid:22040088
[113]  Conlon I, Raff M (2003) Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J Biol 2: 7. pmid:12733998 doi: 10.3410/f.1014464.194921

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133