全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dykstra’s Algorithm for the Optimal Approximate Symmetric Positive Semidefinite Solution of a Class of Matrix Equations

DOI: 10.4236/alamt.2016.61001, PP. 1-10

Keywords: Matrix Equation, Dykstra’s Alternating Projection Algorithm, Optimal Approximate Solution, Least Norm Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X0 = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.

References

[1]  Bauschke, H.H. and Borwein, J.M. (1994) Dykstra’s Alternating Projection Algorithm for Two Sets. Journal of Approximation Theory, 79, 418-443.
http://dx.doi.org/10.1006/jath.1994.1136
[2]  Dai, H. and Lancaster, P. (1996) Linear Matrix Equations from an Inverse Problem of Vibration Theory. Linear Algebra and Its Applications, 246, 31-47.
http://dx.doi.org/10.1016/0024-3795(94)00311-4
[3]  Meng, T. (2001) Experimental Design and Decision Support. In: Leondes, C., Ed., Expert System the Technology of Knowledge Management and Decision Making for 21st Century, Volume 1, Academic Press, San Diego.
[4]  Navarra, A., Odell, P.L. and Young, D.M. (2001) A Representation of the General Common Solution to the Matrix Equations A1XB1=C1, A2XB2=C2 with Applications. Computers & Mathematics with Applications, 41, 929-935.
http://dx.doi.org/10.1016/S0898-1221(00)00330-8
[5]  Wang, Q.W. (2004) A System of Matrix Equations over Arbitrary Regular Rings with Identity. Linear Algebra and Its Applications, 384, 44-53.
http://dx.doi.org/10.1016/j.laa.2003.12.039
[6]  Liao, A.P., Lei, Y. and Yuan, S.F. (2006) The Matrix Nearness Problem for Symmetric Matrices Associated with the Matrix Equations [ATXA,BTXB]=[C,D]. Linear Algebra and Its Applications, 418, 939-954.
http://dx.doi.org/10.1016/j.laa.2006.03.032
[7]  Liao, A.P. and Lei, Y. (2005) Least-Squares Solution with the Minimum-Norm for the Matrix Equations [AXB,GXH]=[C,D]. Computers & Mathematics with Applications, 50, 539-549.
http://dx.doi.org/10.1016/j.camwa.2005.02.011
[8]  Sheng, X.P. and Chen, G.L. (2007) A Finite Iterative Method for Solving a Pair of Linear Matrix Equation (AXB,CXD)=(C,D). Applied Mathematics and Computation, 189, 1350-1358.
http://dx.doi.org/10.1016/j.amc.2006.12.026
[9]  Ding, J., Liu, Y.J. and Ding, F. (2010) Iterative Solutions to Matrix Equation of the Form AiXBi = fi. Computers & Mathematics with Applications, 59, 3500-3507.
http://dx.doi.org/10.1016/j.camwa.2010.03.041
[10]  Peng, Y.X., Hu, X.Y. and Zhang, L. (2006) An Iterative Method for Symmetric Solutions and Optimal Approximation Solution of the System of Matrix Equations A1XB1=C1, A2XB2=C2. Applied Mathematics and Computation, 183, 1127-1137.
http://dx.doi.org/10.1016/j.amc.2006.05.124
[11]  Chen, Y.B., Peng Z.Y. and Zhou, T.J. (2010) LSQR Iterative Method Common Symmetric Solutions to Matrix Equations AXB = E and CXD = F. Applied Mathematics and Computation, 217, 230-236.
http://dx.doi.org/10.1016/j.amc.2010.05.053
[12]  Cai, J. and Chen, G.L. (2009) An Iteraive Algorithm for the Least Squares Bisymmetric Solutions of the Matrix Equations A1XB1=C1, A2XB2=C2. Mathematical and Computer Modelling, 50, 1237-1244.
http://dx.doi.org/10.1016/j.mcm.2009.07.004
[13]  Dehghan, M. and Hajarian, M. (2008) An Iteraive Algorithm for Solving a Pair of Matrix Equations AXB = E, CXD = F over Generalized Centro-Symmetric Matrices. Computers & Mathematics with Applications, 56, 3246-3260.
http://dx.doi.org/10.1016/j.camwa.2008.07.031
[14]  Li, F.L., Hu, X.Y. and Lei, Z. (2008) The Generalized Reflexive Solution for a Class of Matrix Equations (AX=B, XC=D). Acta Mathematica Scientia, 28, 185-193.
http://dx.doi.org/10.1016/S0252-9602(08)60019-3
[15]  Peng, Z.H., Hu, X.Y. and Zhang, L. (2006) An Efficient Algorithm for the Least-Squares Reflexive Solution of the Matrix Equation A1XB1=C1, A2XB2=C2. Applied Mathematics and Computation, 181, 988-999.
http://dx.doi.org/10.1016/j.amc.2006.01.071
[16]  Yuan, S.F., Wang, Q.W. and Xiong, Z.P. (2013) Linear Parameterized Inverse Eigenvalue Problem of Bisymmetric Matrices. Linear Algebra and Its Applications, 439, 1990-2007.
http://dx.doi.org/10.1016/j.laa.2013.05.026
[17]  Yuan, S.F. and Liao, A.P. (2014) Least Squares Hermitian Solution of the Complex Matrix Equation AXB+CXD=E with the Least Norm. Journal of the Franklin Institute, 351, 4978-4997.
http://dx.doi.org/10.1016/j.jfranklin.2014.08.003
[18]  Dykstra, R.L. (1983) An Algorithm for Restricted Least-Squares Regression. Journal of the American Statistical Association, 78, 837-842.
http://dx.doi.org/10.1080/01621459.1983.10477029
[19]  Von Numann, J. (1950) Functional Operators Volume II. Princeton University Press, Princeton.
[20]  Cheney, W. and Goldstein, A. (1959) Proximity Maps for Convex Sets. Proceedings of the American Mathematical Society, 10, 448-450.
http://dx.doi.org/10.1090/S0002-9939-1959-0105008-8
[21]  Mendoza, M., Raydan, M. and Tarazaga, P. (1998) Computing the Nearest Diagonally Dominant Matrix. Numerical Linear Algebra with Applications, 5, 461-474.
http://dx.doi.org/10.1002/(SICI)1099-1506(199811/12)5:6<461::AID-NLA141>3.0.CO;2-V
[22]  Deutsch, F. (2001) Best Approximation in Inner Product Spaces. Springer, New York.
http://dx.doi.org/10.1007/978-1-4684-9298-9
[23]  Boyle, J.P. and Dykstra, R.L. (1986) A Method for Finding Projections onto the Intersections of Convex Sets in Hilbert Spaces. Lecture Notes in Statistics, 37, 28-47.
[24]  Escalante, R. and Raydan, M. (1996) Dykstra’s Algorithm for a Constrained Least-Squares Matrix Problem. Numerical Linear Algebra with Applications, 3, 459-471.
http://dx.doi.org/10.1002/(SICI)1099-1506(199611/12)3:6<459::AID-NLA82>3.0.CO;2-S
[25]  Morillas, P.M. (2005) Dykstra’s Algorithm with Strategies for Projecting onto Certain Polyhedral Cones. Applied Mathematics and Computation, 167, 635-649.
http://dx.doi.org/10.1016/j.amc.2004.06.136
[26]  Higham, N. (1988) Computing a Nearest Symmetric Positive Semidefinite Matrix. Linear Algebra and Its Applications, 103, 103-118.
http://dx.doi.org/10.1016/0024-3795(88)90223-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413